Research on Chemical Intermediates

, Volume 23, Issue 7, pp 587–600 | Cite as

Femtosecond to nanosecond dynamics in fullerenes: Implications for excitedstate optical nonlinearities

  • V. Klimov
  • L. Smilowitz
  • H. Wang
  • M. Grigorova
  • J. M. Robinson
  • A. Koskelo
  • B. R. Mattes
  • F. Wudl
  • D. W. McBranch


We compared detailed dynamics of the excited-state absorption for C60 in solution, thin films, and entrapped in an inorganic sol-gel glass matrix. Our results demonstrate that the microscopic morphology of the C60 molecules plays a crucial role in determining the relaxation dynamics. This is a key factor for applications in optical limiting for nanosecond pulses using reverse saturable absorption. We find that the dynamics of our C60-glass composites occur on long (ns) timescales, comparable to those in solution; thin film samples, by contrast, show rapid decay (<20 picoseconds). These results demonstrate that C60-sol-gel glass composites contain C60 in a molecular dispersion, and are suitable candidates for solid-state optical limiting. Multispectral analysis of the decay dynamics in solution allows accurate determination of both the intersystem crossing time (600±100ps) and the relative strengths of the singlet and triplet excited-state cross sections as a function of wavelength from 450–950 nm. The triplet excited-state cross section is greater than that for the singlet excited-state over the range from 620–810 nm.


Fullerene Probe Pulse Transient Absorption Relaxation Dynamic Transient Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Cheville and N.J. Halas, Phys. Rev. B 45, 4548 (1992).CrossRefGoogle Scholar
  2. 2.
    S.L. Dexheimer, W.A. Varecka, C.V. Shank, D. Mittelman, and A. Zettl, Chem. Phys. Lett. 235, 552 (1995).CrossRefGoogle Scholar
  3. 3.
    S.R. Flom, F.J. Bartoli, H.W. Sarkas, C.D. Merritt, and Z.H. Kafafi, Phys. Rev. B 51, 11376 (1995).CrossRefGoogle Scholar
  4. 4.
    R.J. Sension, C.M. Phillips, A.Z. Szarka, W.J. Romanov, A.R. McGhie, J.P.M. Jr., A.B.S. III, and R.M. Hochstrasser, J. Phys. Chem. 95, 6075 (1991).CrossRefGoogle Scholar
  5. 5.
    T.W. Ebbesen, K. Tanigaki, and S. Kuroshima, Chem. Phys. Lett. 181, 501 (1991).CrossRefGoogle Scholar
  6. 6.
    L. Tutt and A. Kost, Nature 356, 225 (1992).CrossRefGoogle Scholar
  7. 7.
    L. Tutt and T. Boggess, Prog. Quant. Elect. 17, 299 (1993).CrossRefGoogle Scholar
  8. 8.
    D. McLean, R. Sutherland, M. Brant, D. Brandelik, P. Fleitz, and T. Pottenger, Opt. Lett. 18, 858 (1993).CrossRefGoogle Scholar
  9. 9.
    B. Justus, Z. Kafafi, and A. Huston, Opt. Lett. 18, 1603 (1993).CrossRefGoogle Scholar
  10. 10.
    M. Joshi, S. Mishra, H. Rawat, S. Mehendale, and K. Rustagi, Appl. Phys. Lett. 62, 1763 (1993).CrossRefGoogle Scholar
  11. 11.
    D. McBranch, B.R. Mattes, A. Koskelo, J.M. Robinson, and S.P. Love, SPIE Proceedings. Fullerenes and Photonics I 2284, 15 (1994).Google Scholar
  12. 12.
    J.C. Hummelen, B.W. Knight, F. Lepec, F. Wudl, J. Yao, and C.L. Wilkins, J. Org. Chem. 60, 532 (1995).CrossRefGoogle Scholar
  13. 13.
    L. Smilowitz, D. McBranch, V. Klimov, J. Robinson, A. Koskelo, M. Grigorova, B. Mattes, H. Wang, and F. Wudl, Opt. Lett. 21, 922 (1996).CrossRefGoogle Scholar
  14. 14.
    S. McCahon and L. Tutt, U.S. Patent 5,080.469 (January 14, 1992).Google Scholar
  15. 15.
    P.A. Miles, Appl. Opt. 33, 6965 (1994).CrossRefGoogle Scholar
  16. 16.
    B.R. Mattes, D. McBranch, J.M. Robinson, A. Koskelo, and S.P. Love, U.S. Patent 5,420,081 (1995).Google Scholar
  17. 17.
    D. McBranch, V. Klimov, L. Smilowitz, M. Grigorova, B.R. Mattes, J. Robinson, A. Koskelo, H. Wang, and F. Wudl, SPIE Proceedings, Fullerenes and Photonics III 2854, (1996), in press.Google Scholar
  18. 18.
    M. Grigorova, L. Smilowitz, V. Klimov, B.R. Mattes, D. McBranch, J.M. Robinson, A. Koskelo, H. Wang, and F. Wudl, in preparation.Google Scholar
  19. 19.
    D. McBranch, L. Smilowitz, V. Klimov, J. Robinson, B. Mattes, A. Koskelo, J. Hummelen, F. Wudl, N. Borrelli, and J. Withers, SPIE Proceedings, Fullerenes and Photonics II 2530, 195 (1995).Google Scholar
  20. 20.
    J. Arbogast, A. Darmanyan, C. Foote, Y. Rubin, F. Diederich, M. Alvarez, S. Anz, and R. Whetten, J. Phys. Chem. 95, 11 (1991).CrossRefGoogle Scholar
  21. 21.
    B.C. Hess, D.V. Bowersox, S.H. Mardirosian, and L.D. Unterberger, Chem. Phys. Lett. 248, 141 (1996).CrossRefGoogle Scholar
  22. 22.
    A. Seilmeier and W. Kaiser. In: Ultrashort Laser Pulses: Generation and Application, W. Kaiser (Ed.), 1993, p. 279.Google Scholar
  23. 23.
    A. Kost, L. Tutt, M. Klein, T. Dougherty, and W. Elias, Opt. Lett. 18, 334 (1993).CrossRefGoogle Scholar
  24. 24.
    J. Perry, K. Mansour, P. Miles, C.T. Chen, S. Marder, G. Kwag, and M. Kenney, Abstr. Am. Chem. Soc. 209, 131 (1995).Google Scholar
  25. 25.
    T. Xia, D.J. Hagan, A. Dogariu, A.A. Said, and E.W.V. Stryland, Appl. Opt. (1996), in press.Google Scholar
  26. 26.
    A.A. Said, T. Xia, D.J. Hagan, A. Wajsgrus, S. Yang, D. Kovshi, M.A. Decker, S. Khodja, and E.W.V. Stryland, SPIE Proceedings, 2853 (1996), in press.Google Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • V. Klimov
    • 1
  • L. Smilowitz
    • 1
  • H. Wang
    • 2
  • M. Grigorova
    • 1
  • J. M. Robinson
    • 1
  • A. Koskelo
    • 1
  • B. R. Mattes
    • 1
  • F. Wudl
    • 2
  • D. W. McBranch
    • 1
  1. 1.Chemical Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Institute for Polymers and Organic SolidsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations