Research on Chemical Intermediates

, Volume 22, Issue 9, pp 781–790 | Cite as

Formation of eight-membered ring β-keto lactones via the intramolecular trapping of hydroxy acylketenes

  • Nicos A. Petasis
  • Michael A. Patane
Article

Abstract

Eight-membered ring β-keto lactones were prepared from 2,2,6-trimethyl-4H-1,3-dioxin-4-one in three steps involving conjugate addition to α,β-unsaturated aldehydes or ketones, followed by conversion to an alcohol and thermolysis. The formation of these eight-membered rings involves the intramolecular trapping of a hydroxy acyl ketene intermediate and is facilitated by a suppressed ring strain and an unfavorable intramolecular hydrogen bond, which is suggested to favor the formation of oligomers. These aspects of the reaction were supported by molecular mechanics calculations.

Keywords

Thermolysis TMEDA SbF5 Flash Column Chromatography Molecular Mechanic Calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.T. Tidwell, Ketenes, John Wiley & Sons, New York, 1995.Google Scholar
  2. 2.(a)
    R.J. Clemens and J.S. Witzeman, J. Am. Chem. Soc. 111, 2186 (1989); (b) R.J. Clemens and J.A. Hyatt, J. Org. Chem. 50, 2431 (1985); (c) J.A. Hyatt, P.L. Feldman, and R.J. Clemens, J. Org. Chem. 49, 5105 (1984).CrossRefGoogle Scholar
  3. 3.
    K.H. Schonwalder, P. Kollat, J.J. Strezowski, and F. Effenberger, Chem Ber. 117, 3270 (1984).CrossRefGoogle Scholar
  4. 4.(a)
    R. Leung-Toung and C. Wentrup, Tetrahedron 48, 7641 (1992); (b) B. Freiermuth and C. Wentrup, J. Org. Chem. 56, 2286 (1991).CrossRefGoogle Scholar
  5. 5.
    D.W. Emerson, R.L. Titus, and R.M. Gonzalez, J. Org. Chem. 55, 3572, 5301 (1990).CrossRefGoogle Scholar
  6. 6.(a)
    R. Leung-Toung and C. Wentrup, J. Org. Chem. 57, 4850 (1992); (b) V.A. Nikoalev, S.M. Korneev I.V. Terenteva, and I.K. Korobitsyna, Zh. Org. Khim., 27, 2085 (1991); (c) L. Capuano, K. Djokar, N. Schneider, and C. Wamprecht, Liebigs Ann. Chem. 183 (1987).CrossRefGoogle Scholar
  7. 7.
    D.A. Biesiada and P.B. Shevlin, J. Org. Chem. 49, 1151 (1984).CrossRefGoogle Scholar
  8. 8.
    T. Minami, Y. Yamauchi, Y. Ohshiro, T. Agawa, S. Murai, and N. Sonoda, J. Chem. Soc. Perkin Trans. 1 904 (1977).CrossRefGoogle Scholar
  9. 9.
    R.K.J. Boeckman and J.R. Pruitt, J. Am. Chem. Soc. 11, 8286 (1989).CrossRefGoogle Scholar
  10. 10.
    R.K.J. Boeckman, C.H. Weidner, R.B. Perni and J.J. Napier, J. Am. Chem. Soc. 111, 8036 (1989).CrossRefGoogle Scholar
  11. 11.
    P. Lopez-Alvardo, C. Avendano, and J.C. Menendez, Synn. Commun. 22, 2329 (1992).CrossRefGoogle Scholar
  12. 12.(a)
    R.S. Coleman and J.R. Fraser, J. Org. Chem. 58, 385 (1993); (b) C.O. Kappe, G. Farber, C. Wentrup, and G. Kollenz, J. Org. Chem. 57, 7078 (1992); (c) M. Sato, H. Ogasawara, and T. Kato, Chem. Pharm. Bull. 32, 2602 (1984); (d) M. Sato, H. Ogasawara, K. Kato, M. Sakai, and T. Kato, Chem. Pharm. Bull. 31, 4300 (1983).CrossRefGoogle Scholar
  13. 13.(a)
    S.W.E. Eisenberg, M.J Kurth, and W.H. Fink, J. Org. Chem. 60, 3736 (1995); (b) A.D. Allen, M.A. McAllister, and T.T. Tidwell, Tetrahedron Lett. 34, 1095 (1993).CrossRefGoogle Scholar
  14. 14.
    C. Kaneko, M. Sato, J. Sakaki, and Y. Abe, J. Heterocyclic Chem. 27, 25 (1990).CrossRefGoogle Scholar
  15. 15.(a)
    A.D. Allen, L. Gong, and T.T. Tidwell, J. Am. Chem. Soc. 112, 6396 (1990); (b) M.T. Nguyen, T.K. Ha, and R.A.M. O'Ferall, J. Org. Chem. 55, 3251 (1990); (c) R. Janoschek, W.M.F. Fabian, G. Kollentz, and C.O.J. Kappe, J. Comput. Chem. 15, 132 (1994); (d) D.M. Birney, J. Org. Chem. 59, 2557 (1994); (e) M.W. Wong and C. Wentrup, J. Org. Chem. 59, 5279 (1994); (f) C.O. Kappe, M.W. Wong, and C. Wentrup, J. Org. Chem. 60, 1686 (1995).CrossRefGoogle Scholar
  16. 16.
    G.A. Olah, A. Germain, H.C. Lin, and K. Dunne, J. Am. Chem. Soc. 97, 5477 (1975).CrossRefGoogle Scholar
  17. 17.
    A.D. Allen, M.A. McAllister, and T.T. Tidwell, Tetrahedron Lett. 34, 1095 (1993).CrossRefGoogle Scholar
  18. 18.
    N.A. Petasis and M.A. Patane, Tetrahedron 48, 5757 (1992).CrossRefGoogle Scholar
  19. 19.
    N.A. Petasis and M.A. Patane, J. Chem. Soc., Chem. Commun. 836 (1990).Google Scholar
  20. 20.
    G. Rousseau, Tetrahedron, 51, 2777 (1995).CrossRefGoogle Scholar
  21. 21.(a)
    K.R. Buszek, N. Sato, and Y. Jeong, J. Am. Chem. Soc. 116, 5512 (1994); (b) D.M. Tapiolas, M. Roman, W. Fenical, T.J. Stout, and J. Clardy, J. Am. Chem. Soc. 113, 4682 (1991).CrossRefGoogle Scholar
  22. 22.(a)
    M. Bratz, W.H. Bullock, L.E. Overman, and T. Takemoto, J. Am. Chem. Soc. 117, 5958 (1995). (b) R.A. Robinson, J.S. Clark, and A.B. Holmes, J. Am. Chem. Soc. 115, 10400 (1993); (c) K.L. Erickson. In: Marine Natural Products, P.J. Scheuer, (Ed.), Academic Press, New York, 1983, pp. 131.CrossRefGoogle Scholar
  23. 23.(a)
    C. Chen, E.K. Quinn, M.M. Olmstead, and M.J. Kurth, J. Org. Chem. 58, 5011 (1993); (b) J. Sakaki, Y. Sugita, M. Sato, and C. Kaneko, J. Chem. Soc., Chem. Commun. 6, 434 (1991); (c) J. Sakaki, Y. Sugita, M. Sato, and C. Kaneko, Tetrahedron 47, 6197 (1991); (d) M. Sato, J. Sakaki, Y. Sugita, S. Yasuda, H. Sakoda, and C. Kaneko, Tetrahedron 47, 5689 (1991); (e) M. Sato, J. Sakaki, K. Takayama, and Kobayashi, Chem. Pharm. Bull. 38, 94 (1990).CrossRefGoogle Scholar
  24. 24.
    A.B. Smith, III, and R.M.J. Scarborough, Tetrahedron Lett. 4193 (1978).Google Scholar
  25. 25.
    R.S. Glass (Ed.), Conformational Analysis of Medium-Sized Heterocycles, VCH, New York, 1988.Google Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • Nicos A. Petasis
    • 1
  • Michael A. Patane
    • 1
  1. 1.Department of Chemistry and Loker Hydrocarbon Research InstituteUniversity of Southern CaliforniaLos AngelesU.S.A.

Personalised recommendations