Advertisement

Research on Chemical Intermediates

, Volume 21, Issue 1, pp 7–16 | Cite as

High pressure nitration of toluene using nitrogen dioxide on zeolite catalysts

  • D. B. Akolekar
  • G. Lemay
  • A. Sayari
  • S. Kaliaguine
Article

Abstract

Nitration of toluene by nitrogen dioxide in the presence of zeolite catalysts was carried out in a high pressure reaction system. Different zeolites (viz. H-ZSM-5, H-mordenite, HY etc.) were used as catalysts. The effects of NO2/toluene molar ratio and the total pressure on the formation of mono- and di-nitrotoluenes were also investigated. The N2-sorption capacity, X-ray diffraction analysis and catalytic activity measurements of the regenerated HY catalyst revealed that the HY catalyst can be reused.

Keywords

Zeolite Toluene Nitration Nitrogen Dioxide Zeolite Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Mckee and R.H. Wilhelm, Ind. Eng. Chem. 28, 662 (1936).CrossRefGoogle Scholar
  2. 2.
    R.H. Wilhelm, U.S. Patent 2,109,873 (1938).Google Scholar
  3. 3.
    J. Rout, U.S. Patent 2,431,585 (1947).Google Scholar
  4. 4.
    Shimada, U.S. Patent 3,966,830 (1976).Google Scholar
  5. 5.
    D.E. Owsley and J.J. Bloomfield, U.S. Patent 4,107,220 (1978).Google Scholar
  6. 6.
    Schubert, U.S. Patent 4,112,006 (1978).Google Scholar
  7. 7.
    Liu, U.S. Patent 4,123,466 (1978).Google Scholar
  8. 8.
    I. Schumacher and K.B. Wang, U.S. Patent 4,426,543 (1984).Google Scholar
  9. 9.
    Y. Ono, K. Tohmori, and E. Suzuki, Proc. 6th Brazilian Semin. Catal., Salvador, Brazil, September 1991, p. 1688.Google Scholar
  10. 10.
    D.E. Omsley and J.J. Bloomfield, U.S. Patent 4,107,220 (1978).Google Scholar
  11. 11.
    W.F. Hölderich, Stud. Surf Sci., and Catal. 58, 631 (1990).CrossRefGoogle Scholar
  12. 12.
    A. Germain, T. Akonz, and F. Figueras, Proc. 9th Int. Zeolite Conf, Montreal, Canada, July 1992, p. RP 65.Google Scholar
  13. 13.
    D.B. Akolekar, Sorption, Diffusion and Catalytic Reactions on Zeolites and Zeolite-like Materials, Ph.D. thesis, University of Poona, Poona, 1987.Google Scholar
  14. 14.
    P.B. Weisz, Chemtech. 3, 498 (1973).Google Scholar
  15. 15.
    P.B. Weisz, PureAppl. Chem. 52, 2091 (1980).CrossRefGoogle Scholar
  16. 16.
    P.B. Weisz, Stud Surf Sci. Catal. 7A, 3 (1981).CrossRefGoogle Scholar
  17. 17.
    N.A. Valyasho, V.I. Bliznynkov, A.E. Lutskii, T. Khar’kov, Khim-Teknol., Inst.im. S.M. Kirova No. 4,48–59(1944).Google Scholar
  18. 18.
    T.K. Wright and R. Hurd. In: Toluene, the Xylenes and their Industrial Derivatives, E.G. Hancock (Ed.), 15, 233 (1982).Google Scholar
  19. 19.
    C.K. Ingold, Structure and Mechanism in Organic Chemistry, 2nd. Edition, Cornell Univ. Press, 1969.Google Scholar
  20. 20.
    L. Eberson and F. Radner, Acc. Chem. Res. 20, 53 (1987).CrossRefGoogle Scholar
  21. 21.
    L. Eberson and F. Radner, Acta Chem. Scand Ser. B 39, 343 (1985).CrossRefGoogle Scholar
  22. 22.
    B. Milligan,. OrgJ. Chem. 48, 1495 (1983).CrossRefGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • D. B. Akolekar
    • 1
  • G. Lemay
    • 1
  • A. Sayari
    • 1
  • S. Kaliaguine
    • 1
  1. 1.Département de Génie Chimique et CERPICUniversité LavalQuébecCanada

Personalised recommendations