Research on Chemical Intermediates

, Volume 20, Issue 8, pp 879–892 | Cite as

Decay of Ru(BPY)3 3+ in thin nafion layers catalyzed by Co(II)

  • Joseph Rabani
  • Tsukada Yoshida
  • Masao Kaneko
  • Akira Kira


Catalytic oxidation of water by Ru(bpy)3 3+ in the presence of Co2+ ions, well known in homogeneous solution, has been investigated in thin Nafion layers. Nafion layers on ITO electrodes were equilibrated with Ru(bpy)3 2+. Ru(bpy)3 3+ was produced by electrochemical oxidation after which the electrode was transferred into the reaction cell containing buffered Co2+ solution. The build up of Ru(bpy)3 2+ absorbance at 454 nm was followed spectrophotometrically. The reaction rate is proportional to [Ru(III)], [Co2+] and [HPO4 2-]. We found no evidence for a pH effect in the range 6–8, and no inhibition by Ru(II). A limiting rate of formation of Ru(II) is observed at high Co2+ or phosphate ion concentrations. At high local concentration of the Ru complex in the Nafion layer (~ 0.5 M), two Ru(II) formation processes are observed, their rates differ by one order, but other features (effects of [Ru(III)], [Ru(II)], [Co2+], phosphate and pH) remain unchanged. These results are in contrast with homogeneous solution where the rate of build up of Ru(II) has been previously reported to be proportional to [Ru(III)], [Co2+] and [OH-]2, and inversely proportional to [Ru(II)]. A mechanism is proposed which accounts for these observations.


Phosphate Concentration Order Rate High Local Concentration Nation Layer Rhenium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kaneko and D. Woehrle, Adv. Polym. Sci., 84, 141 (1988).CrossRefGoogle Scholar
  2. 2.
    M. Kaneko and E. Tsushida, (Eds). Macromolecular Complexes: Dynamic Interactions and Electronic Processes, VCH, New York (1991).Google Scholar
  3. 3.
    S.W. Gersten, G.J. Samuels, and T.J. Meyer, J. Am. Chem. Soc., 104, 4029 (1982).CrossRefGoogle Scholar
  4. 4.
    J.A. Gilbert, D.S. Eggleston, W.R. Murphy Jr., D.A. Geselowitz, S.W. Gersten, D.J. Hodgson, and T.J. Meyer, J. Am. Chem. Soc., 107, 3855 (1985).CrossRefGoogle Scholar
  5. 5.
    R. Ramaraj, A. Kira, and J. Kaneko, J. Chem. Soc. Faraday Trans. I, 82, 3515 (1986).CrossRefGoogle Scholar
  6. 6.
    R. Ramaraj, A. Kira, and J. Kaneko, J. Chem. Soc. Faraday Trans. I, 83, 1539 (1987).CrossRefGoogle Scholar
  7. 7.
    R. Ramaraj, A. Kira, and J. Kaneko, Angew. Chem. Int. Engl. 25, 1009 (1986).CrossRefGoogle Scholar
  8. 8.
    F.R. Rotzinger, S. Munavalli, P. Comte, J.K. Hurst, M. Graetzel, F.J. Pern, and A.J. Frank, J. Am. Chem. Soc., 109, 6619 (1987).CrossRefGoogle Scholar
  9. 9.
    P. Comte, M.K. Nazeeruddin, F.R. Rotzinger, A.J. Frank, and M. Graetzel, J. Mol. Catal., 52, 63 (1989).CrossRefGoogle Scholar
  10. 10.
    K. Honda, and A.J. Frank, J. Chem. Soc. Chem. Commun. 1684 (1981).Google Scholar
  11. 11.
    J.K. Hurst, J. Zhou, and Y. Lei, Inorg. Chem., 31, 1010 (1992).CrossRefGoogle Scholar
  12. 12.
    H. Nijs, M. Cruz, J. Fripiat, and H. Van Damme, J. Chem. Soc. Chem. Commun., 1026 (1981).Google Scholar
  13. 13.
    H. Nijs, M. Cruz, J. Fripiat, and H. Van Damme, Nouv. J. Chim., 6, 551 (1982).Google Scholar
  14. 14.
    J.P. Collin and J.P. Sauvage, Inorg. Chem., 25, 135 (1986).CrossRefGoogle Scholar
  15. 15.
    R. Ramaraj, A. Kira, and M. Kaneko, J. Electroanal. Chem., 348, 367 (1993).CrossRefGoogle Scholar
  16. 16.
    R. Ramaraj, and M. Kaneko, Trends in Inorganic Chemistry 1, 57 (?).Google Scholar
  17. 17.
    A. Farina, S. Hernandez, and E. Roman, J. Chem. Soc. Dalton Trans., 849 (1989).Google Scholar
  18. 18.
    R. Beer, F. Binder, and G. Calzaferri, J. Photochem. Photobiol. A: Chem. 69, 67 (1992).CrossRefGoogle Scholar
  19. 19.
    P.K. Ghosh, B.S. Brunschwig, M. Chou, C. Creutz, and N. Sutin, J. Am. Chem. Soc., 106, 4772 (1984).CrossRefGoogle Scholar
  20. 20.
    G.L. Elizarova, L.G. Matvienko, N.V. Lozhkina, and V.N. Parmon, React. Kinet. Catal. Lett., 2, 331 (1988).CrossRefGoogle Scholar
  21. 21.
    G.L. Elizarova, L.G. Matvienko, and V.N. Parmon, J. Molec. Catalysis, 43, 171 (1987).CrossRefGoogle Scholar
  22. 22. (a)
    A.M. Hodges, O. Johansen, J.W. Loder, A.W.H. Mau, J. Rabani, W.H.F. Sasse, J. Phys. Chem., 95, 5966 (1991); (b) A. Safranj, S. Gershuni, and J. Rabani, (to be published).CrossRefGoogle Scholar
  23. 23. (a)
    H.S. White, J. Leddy, A.J. Bard, J. Am. Chem. Soc., 104, 4811 (1982); (b) D.A. Buttry and F.C. Anson, J. Electroanal. Chem. Interfacial Electrochem., 130, 333 (1981); (c) C.R. Martin and K.A. Dollard, Electroanal. Chem. Interfacial Electrochem., 159, 127 (1983).CrossRefGoogle Scholar
  24. 24.
    M.N. Szentirmay, N.E. Prieto, and C.R. Martin, J. Phys. Chem., 89, 3012 (1985).CrossRefGoogle Scholar

Copyright information

© VSP 1994

Authors and Affiliations

  • Joseph Rabani
    • 1
  • Tsukada Yoshida
    • 2
  • Masao Kaneko
    • 2
  • Akira Kira
    • 2
  1. 1.Farkas Centre, Department of Physical ChemistryThe Hebrew UniversityJerusalemIsrael
  2. 2.Chemical Dynamics LaboratoryThe Institute of Physical and Chemical Research (Riken)Wako, SaitamaJapan

Personalised recommendations