Research on Chemical Intermediates

, Volume 20, Issue 3–5, pp 463–502 | Cite as

An evaluation of the mechanism of nitrous acid formation in the urban atmosphere

  • J. G. Calvert
  • G. Yarwood
  • A. M. Dunker
Article

Abstract

Nitrous acid (HONO) has been observed to build in the atmosphere of cities during the nighttime hours and it is suspected that photolysis of HONO may be a significant source of HO radicals early in the day. The sources of HONO are poorly understood, making it difficult to account for nighttime HONO formation in photochemical modeling studies of urban atmospheres, such as modeling of urban O3 formation. This paper reviews the available information on measurements of HONO in the atmosphere and suggest mechanisms of HONO formation. The most extensive atmospheric measurement databases are used to investigate the relations between HONO and potential precursors. Based on these analyses, the nighttime HONO concentrations are found to correlate best with the product of NO, NO2 and H2O concentrations, or possibly the NO, NO2, H2O, and aerosol concentrations. A new mechanism for nighttime HONO formation is proposed that is consistent with this precursor relationship, namely, reaction of N2O3 with moist aerosols (or other surfaces) to form two HONO molecules. Theoretical considerations of the equilibrium constant for N2O3 formation and the theory of gas-particle reactions show that the proposed reaction is a plausible candidate for HONO formation in urban atmospheres. For photochemical modeling purposes, a relation is derived in terms of gas phase species only (i.e., excluding the aerosol concentration): NO + NO2 + H2O → 2 HONO with a rate constant of 1.68 x 10-17 e6348/T (ppm-2 min-1). This rate constant is based on an analysis of ambient measurements of HONO, NO, NO2 and H2O, with a temperature dependence from the equilibrium constant for formation of N2O3. Photochemical grid modeling is used to investigate the effects of this relation on simulated HONO and O3 concentrations in Los Angeles, and the results are compared to two alternative sources of nighttime HONO that have been used by modelers. Modeling results show that the proposed relation results in HONO concentrations consistent with ambient measurements. Furthermore, the relation represents a conservative modeling approach because HONO production is effectively confined to the model surface layers in the nighttime hours, the time and place for which ambient data exist to show that HONO formation occurs. The empirical relation derived here should provide a useful tool for modelers until such time as knowledge of the HONO forming mechanisms has improved and more quantitative relations can be derived.

Keywords

HONO Urban Atmosphere Differential Optical Absorption Spectroscopy Smog Chamber HONO Formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Nash, Tellus 26, 175 (1974).CrossRefGoogle Scholar
  2. 2.
    D. Perner and U. Platt, Geophys. Res. Lett. 6, 917 (1979).CrossRefGoogle Scholar
  3. 3.
    W. Platt, D. Pemer, G.W. Harris, A.M. Winer, and J.N. Pitts, Jr., Nature 285, 312 (1980).CrossRefGoogle Scholar
  4. 4.
    G.W. Harris, W.P.L. Carter, A.M. Winer, and J.N. Pitts, Jr., Environ. Sci. Technol. 16, 414 (1982).CrossRefGoogle Scholar
  5. 5.
    J.N. Pitts, Jr., E. Sanhueza, R. Atkinson, W.P.L. Carter, A.M. Winer, G.W. Harris, and C.N. Plum, Int. J. Chem. Kinet. 16, 919 (1984).CrossRefGoogle Scholar
  6. 6.
    A. Sjödin and M. Ferm, Atmos. Environ. 19, 985 (1985).CrossRefGoogle Scholar
  7. 7.
    A. Sjödin, Environ. Sci. Technol. 22, 1086 (1988).CrossRefGoogle Scholar
  8. 8.
    H.W. Biermann, J.N. Pitts, Jr., and A.M. Winer, in Advances in Air Sampling, Lewis Publishers, 1988, Ch. 19, p. 265.Google Scholar
  9. 9.
    H.W. Biermann, E.C. Tuazon, A.M. Winer, T.J. Wallington, and J.N. Pitts, Jr., Atmos. Environ. 22, 1545 (1988).CrossRefGoogle Scholar
  10. 10.
    M.O. Rodgers and D.D. Davis, Environ. Sci. Technol. 23, 1106 (1989); unpublished additional data from March 16 and March 21–22, 1986, not given in this paper, were available to the author and used in testing mechanisms.CrossRefGoogle Scholar
  11. 11.
    G. Lammel and D. Perner, J. Aerosol Sci. 19, 1199 (1988).CrossRefGoogle Scholar
  12. 12.
    B.R. Appel, A.M. Winer, Y. Tokiwa, and H.W. Biermann, Atmos. Environ. 24A, 611 (1990).Google Scholar
  13. 13.
    Z. Večera and P.K. Dasgupta, Environ. Sci. Technol. 25, 255 (1991).CrossRefGoogle Scholar
  14. 14.
    J. Notholt, J. Hjorth, and F. Raes, Atmos. Environ. 26A, 211 (1992); Ibid., Ber. Bunsenges Phys. Chem. 92, 290 (1992).Google Scholar
  15. 15.
    A. Rondon and E. Sanhueza, Tellus 41B, 474 (1989).Google Scholar
  16. 16.
    Shao-Meng Li, J. Atmos. Chem. submitted for publication, June 28, 1990.Google Scholar
  17. 17.
    W.R. Stockwell and J.G. Calvert, J. Photochem. 8, 193 (1978).CrossRefGoogle Scholar
  18. 18.
    W.P.L. Carter, R. Atkinson, A.M. Winer, and J.N. Pitts, Jr., Int. J. Chem. Kinet. 13, 735 (1981).CrossRefGoogle Scholar
  19. 19.
    L.G. Wayne and D.M. Yost, J. Chem. Phys. 19, 41 (1951).CrossRefGoogle Scholar
  20. 20.
    R.F. Graham and B.J. Tyler, J. Chem. Soc. Faraday I. 68, 683 (1972).CrossRefGoogle Scholar
  21. 21.
    W.H. Chan, R.J. Nordstrom, J.G. Calvert, and J.H. Shaw, Environ. Sci. Technol. 10, 674 (1976).CrossRefGoogle Scholar
  22. 22.
    R.A. Cox and R.G. Derwent, J. Photochem. 6, 23 (1976/77).CrossRefGoogle Scholar
  23. 23.
    E.W. Kaiser and C.H. Wu, J. Phys. Chem. 81, 187 (1977).CrossRefGoogle Scholar
  24. 24.
    E.W. Kaiser and C.H. Wu, J. Phys. Chem. 81, 1701 (1977).CrossRefGoogle Scholar
  25. 25.
    F. Sakamaki, S. Hatakeyama, and H. Akimoto, Int. J. Chem. Kinet. 15, 1013 (1983).CrossRefGoogle Scholar
  26. 26.
    W.B. DeMore, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, and M.J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation No. 10 NASA, Jet Propulson Laboratory, California Institute of Technology, Pasadena, CA (August 15, 1992).Google Scholar
  27. 27.
    W.R. Stockwell and J.G. Calvert, J. Geophys. Res. 88, 6673 (1983).CrossRefGoogle Scholar
  28. 28.
    C.J. Howard, J. Chem. Phys. 67, 5258 (1977).CrossRefGoogle Scholar
  29. 29.
    J.N. Pitts Jr., H.W. Biermann, R. Atkinson, and W.M. Winer, Geophys. Res. Lett. 11, 557 (1984).CrossRefGoogle Scholar
  30. 30.
    J.P. Killus and G.Z. Whitten, J. Geophys. Res. 90, 2430 (1985).CrossRefGoogle Scholar
  31. 31.
    G.S. Tyndall, J.J. Orlando, and J.G. Calvert, J. Atmos. Chem. (1993) submitted for publication.Google Scholar
  32. 32.
    J.N. Pitts, Jr., H.W. Biermann, A.M. Winer, and E.C. Tuazon, Atmos. Environ. 18, 847 (1984).CrossRefGoogle Scholar
  33. 33.
    R.A. Gorse, Ford Motor Company World Headquarters, Dearborn, MI, personal communication (1993).Google Scholar
  34. 34.
    A. Winer and H.W. Biermann, Measurements of nitrous acid, nitrate radicals, formaldehyde, and nitrogen dioxide for the southern California air quality study by differential optical absorption spectroscopy. Final Report, Contract No. A6-146-32, California Air Resources Board, December (1989).Google Scholar
  35. 35.
    S.E. Schwartz. In: SO 2. NO and NO 2 Oxidation Mechanisms: Atmospheric Considerations, J.G. Calvert (Ed.), Chapter 4, pp. 173–208, Butterworth Publishers, Boston (1984).Google Scholar
  36. 36.
    H.M. Ten Brink, J.A. Bontje, H. Spoelstra, and J.F. Van de Vate. In: Studies in Environmental Science, Vol. 1, M.M. Benarie (Ed.), pp. 239-244, Elsevier Scientific, Amsterdam.Google Scholar
  37. 37.
    W.P.L. Carter, R. Atkinson, A.M. Winer, and J.N. Pitts, Jr., Int. J. Chem. Kinet. 14, 1071 (1982).CrossRefGoogle Scholar
  38. 38.
    F. Sakamaki and H. Akimoto, Int. J. Chem. Kinet. 20, 111 (1988).CrossRefGoogle Scholar
  39. 39.
    A.C. Besemer and H. Nieboer, Atmos. Environ. 19, 507 (1985).CrossRefGoogle Scholar
  40. 40.
    R. Svensson, E. Ljungström, and O. Lindqvist, Atmos. Environ. 21, 1529 (1987).CrossRefGoogle Scholar
  41. 41.
    H. Akimoto, H. Takagi, and F. Sakamaki, Int. J. Chem. Kinet. 19, 539 (1987).CrossRefGoogle Scholar
  42. 42.
    M.E. Jenkin, R.A. Cox, and D.J. Williams, Atmos. Environ. 22, 487 (1988).CrossRefGoogle Scholar
  43. 43.
    W. A. Glasson and A.M. Dunker, Environ. Sci. Technol. 23, 970 (1989).CrossRefGoogle Scholar
  44. 44.
    C. Perrino, F. De Santis, and A Febo, Atmos. Environ. 22, 1925 (1988).CrossRefGoogle Scholar
  45. 45.
    J.E. Sickles, II and L.L. Hodson, Atmos. Environ. 23, 2321 (1989).CrossRefGoogle Scholar
  46. 46.
    G.R. Appel. Atmos. Environ. 24A, 717 (1990).Google Scholar
  47. 47.
    E. Sanhueza, C.N. Plum, and J.N. Pitts, Jr., Atmos. Environ. 18, 1029 (1984).CrossRefGoogle Scholar
  48. 48.
    I. Allegrini, F. De Santis, V. Di Palo, A. Febo, C. Perrino, M. Possanzini, and A. Leberti, Sci. Total Environ. 67, 1 (1987).CrossRefGoogle Scholar
  49. 49.
    J.P. Killus and G.Z. Whitten, Int. J. Chem. Kinet. 22, 547 (1990).CrossRefGoogle Scholar
  50. 50.
    W. Junkermann and T. Ibusuki, Atm. Environ. 26A, 3099 (1992).Google Scholar
  51. 51.
    B. Finlayson-Pitts, Nature 306, 676 (1983).CrossRefGoogle Scholar
  52. 52.
    F.W. Lurmann, W.P.L. Carter, and L.A. Coyner, A Surrogate Species Chemical Reaction Mechanism for Urban-scale Air Quality Simulation Models, Volume II - Guidelines for Using the Mechanism, Report for EPA Contract No. 68-02-4104 February, 1987.Google Scholar
  53. 53.
    A. Sjödin and M. Ferm, Authors reply, Atmos. Environ. 20, 409 (1986).CrossRefGoogle Scholar
  54. 54.
    R. Atkinson, W.P.L. Carter, J. N. Pitts, Jr., and A.M. Winer, Atmos. Environ. 20, 408 (1986).CrossRefGoogle Scholar
  55. 55.
    I.W.M. Smith and G. Yarwood, Chem. Phys. Lett. 130, 24 (1986).CrossRefGoogle Scholar
  56. 56.
    M. Mozurkewich and J.G. Calvert, J. Geophys. Res. 93, 15889 (1988).CrossRefGoogle Scholar
  57. 57.
    A. Fried, B.E. Henry, J.G. Calvert, and M. Mozurkewich, J. Geochem. Res. (1993), accepted for publication.Google Scholar
  58. 58.
    The authors are grateful to Dr. Bart Croes of the California Air Resources Board for providing them with all of the data for the SCAQS study of 1987.Google Scholar
  59. 59.
    R.E. Morris and T.C. Myers, User’s Guide for the Urban Airshed Model, Volume I: User’s Manual for UAM (CB-IV), U.S. Environmental Protection Agency (EPA-450/4-90-007A), 1990.Google Scholar
  60. 60.
    M.W. Gery, G.Z. Whitten, J.P. Killus, and M.C. Dodge, J. Geophy. Res. 94(D10), 12,925 (1989).CrossRefGoogle Scholar
  61. 61.
    K.K. Wagner and N.J. Wheeler, In: Tropospheric Ozone and the Environment II, Vol. 20, R.L. Berglund (Ed.), pp. 256–266, Air Waste Management Association, Pittsburgh (1992).Google Scholar

Copyright information

© VSP 1994

Authors and Affiliations

  • J. G. Calvert
    • 1
  • G. Yarwood
    • 2
  • A. M. Dunker
    • 3
  1. 1.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderUSA
  2. 2.Systems Applications InternationalSan RafaelUSA
  3. 3.General Motors Research and Development CenterWarrenUSA

Personalised recommendations