Skip to main content
Log in

An evaluation of the mechanism of nitrous acid formation in the urban atmosphere

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nitrous acid (HONO) has been observed to build in the atmosphere of cities during the nighttime hours and it is suspected that photolysis of HONO may be a significant source of HO radicals early in the day. The sources of HONO are poorly understood, making it difficult to account for nighttime HONO formation in photochemical modeling studies of urban atmospheres, such as modeling of urban O3 formation. This paper reviews the available information on measurements of HONO in the atmosphere and suggest mechanisms of HONO formation. The most extensive atmospheric measurement databases are used to investigate the relations between HONO and potential precursors. Based on these analyses, the nighttime HONO concentrations are found to correlate best with the product of NO, NO2 and H2O concentrations, or possibly the NO, NO2, H2O, and aerosol concentrations. A new mechanism for nighttime HONO formation is proposed that is consistent with this precursor relationship, namely, reaction of N2O3 with moist aerosols (or other surfaces) to form two HONO molecules. Theoretical considerations of the equilibrium constant for N2O3 formation and the theory of gas-particle reactions show that the proposed reaction is a plausible candidate for HONO formation in urban atmospheres. For photochemical modeling purposes, a relation is derived in terms of gas phase species only (i.e., excluding the aerosol concentration): NO + NO2 + H2O → 2 HONO with a rate constant of 1.68 x 10-17 e6348/T (ppm-2 min-1). This rate constant is based on an analysis of ambient measurements of HONO, NO, NO2 and H2O, with a temperature dependence from the equilibrium constant for formation of N2O3. Photochemical grid modeling is used to investigate the effects of this relation on simulated HONO and O3 concentrations in Los Angeles, and the results are compared to two alternative sources of nighttime HONO that have been used by modelers. Modeling results show that the proposed relation results in HONO concentrations consistent with ambient measurements. Furthermore, the relation represents a conservative modeling approach because HONO production is effectively confined to the model surface layers in the nighttime hours, the time and place for which ambient data exist to show that HONO formation occurs. The empirical relation derived here should provide a useful tool for modelers until such time as knowledge of the HONO forming mechanisms has improved and more quantitative relations can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nash, Tellus 26, 175 (1974).

    Article  CAS  Google Scholar 

  2. D. Perner and U. Platt, Geophys. Res. Lett. 6, 917 (1979).

    Article  CAS  Google Scholar 

  3. W. Platt, D. Pemer, G.W. Harris, A.M. Winer, and J.N. Pitts, Jr., Nature 285, 312 (1980).

    Article  CAS  Google Scholar 

  4. G.W. Harris, W.P.L. Carter, A.M. Winer, and J.N. Pitts, Jr., Environ. Sci. Technol. 16, 414 (1982).

    Article  CAS  Google Scholar 

  5. J.N. Pitts, Jr., E. Sanhueza, R. Atkinson, W.P.L. Carter, A.M. Winer, G.W. Harris, and C.N. Plum, Int. J. Chem. Kinet. 16, 919 (1984).

    Article  CAS  Google Scholar 

  6. A. Sjödin and M. Ferm, Atmos. Environ. 19, 985 (1985).

    Article  Google Scholar 

  7. A. Sjödin, Environ. Sci. Technol. 22, 1086 (1988).

    Article  Google Scholar 

  8. H.W. Biermann, J.N. Pitts, Jr., and A.M. Winer, in Advances in Air Sampling, Lewis Publishers, 1988, Ch. 19, p. 265.

  9. H.W. Biermann, E.C. Tuazon, A.M. Winer, T.J. Wallington, and J.N. Pitts, Jr., Atmos. Environ. 22, 1545 (1988).

    Article  CAS  Google Scholar 

  10. M.O. Rodgers and D.D. Davis, Environ. Sci. Technol. 23, 1106 (1989); unpublished additional data from March 16 and March 21–22, 1986, not given in this paper, were available to the author and used in testing mechanisms.

    Article  CAS  Google Scholar 

  11. G. Lammel and D. Perner, J. Aerosol Sci. 19, 1199 (1988).

    Article  CAS  Google Scholar 

  12. B.R. Appel, A.M. Winer, Y. Tokiwa, and H.W. Biermann, Atmos. Environ. 24A, 611 (1990).

    Google Scholar 

  13. Z. Večera and P.K. Dasgupta, Environ. Sci. Technol. 25, 255 (1991).

    Article  Google Scholar 

  14. J. Notholt, J. Hjorth, and F. Raes, Atmos. Environ. 26A, 211 (1992); Ibid., Ber. Bunsenges Phys. Chem. 92, 290 (1992).

    Google Scholar 

  15. A. Rondon and E. Sanhueza, Tellus 41B, 474 (1989).

    Google Scholar 

  16. Shao-Meng Li, J. Atmos. Chem. submitted for publication, June 28, 1990.

  17. W.R. Stockwell and J.G. Calvert, J. Photochem. 8, 193 (1978).

    Article  CAS  Google Scholar 

  18. W.P.L. Carter, R. Atkinson, A.M. Winer, and J.N. Pitts, Jr., Int. J. Chem. Kinet. 13, 735 (1981).

    Article  CAS  Google Scholar 

  19. L.G. Wayne and D.M. Yost, J. Chem. Phys. 19, 41 (1951).

    Article  CAS  Google Scholar 

  20. R.F. Graham and B.J. Tyler, J. Chem. Soc. Faraday I. 68, 683 (1972).

    Article  CAS  Google Scholar 

  21. W.H. Chan, R.J. Nordstrom, J.G. Calvert, and J.H. Shaw, Environ. Sci. Technol. 10, 674 (1976).

    Article  CAS  Google Scholar 

  22. R.A. Cox and R.G. Derwent, J. Photochem. 6, 23 (1976/77).

    Article  CAS  Google Scholar 

  23. E.W. Kaiser and C.H. Wu, J. Phys. Chem. 81, 187 (1977).

    Article  CAS  Google Scholar 

  24. E.W. Kaiser and C.H. Wu, J. Phys. Chem. 81, 1701 (1977).

    Article  CAS  Google Scholar 

  25. F. Sakamaki, S. Hatakeyama, and H. Akimoto, Int. J. Chem. Kinet. 15, 1013 (1983).

    Article  CAS  Google Scholar 

  26. W.B. DeMore, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, and M.J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation No. 10 NASA, Jet Propulson Laboratory, California Institute of Technology, Pasadena, CA (August 15, 1992).

    Google Scholar 

  27. W.R. Stockwell and J.G. Calvert, J. Geophys. Res. 88, 6673 (1983).

    Article  CAS  Google Scholar 

  28. C.J. Howard, J. Chem. Phys. 67, 5258 (1977).

    Article  CAS  Google Scholar 

  29. J.N. Pitts Jr., H.W. Biermann, R. Atkinson, and W.M. Winer, Geophys. Res. Lett. 11, 557 (1984).

    Article  CAS  Google Scholar 

  30. J.P. Killus and G.Z. Whitten, J. Geophys. Res. 90, 2430 (1985).

    Article  CAS  Google Scholar 

  31. G.S. Tyndall, J.J. Orlando, and J.G. Calvert, J. Atmos. Chem. (1993) submitted for publication.

  32. J.N. Pitts, Jr., H.W. Biermann, A.M. Winer, and E.C. Tuazon, Atmos. Environ. 18, 847 (1984).

    Article  CAS  Google Scholar 

  33. R.A. Gorse, Ford Motor Company World Headquarters, Dearborn, MI, personal communication (1993).

  34. A. Winer and H.W. Biermann, Measurements of nitrous acid, nitrate radicals, formaldehyde, and nitrogen dioxide for the southern California air quality study by differential optical absorption spectroscopy. Final Report, Contract No. A6-146-32, California Air Resources Board, December (1989).

  35. S.E. Schwartz. In: SO 2. NO and NO 2 Oxidation Mechanisms: Atmospheric Considerations, J.G. Calvert (Ed.), Chapter 4, pp. 173–208, Butterworth Publishers, Boston (1984).

    Google Scholar 

  36. H.M. Ten Brink, J.A. Bontje, H. Spoelstra, and J.F. Van de Vate. In: Studies in Environmental Science, Vol. 1, M.M. Benarie (Ed.), pp. 239-244, Elsevier Scientific, Amsterdam.

  37. W.P.L. Carter, R. Atkinson, A.M. Winer, and J.N. Pitts, Jr., Int. J. Chem. Kinet. 14, 1071 (1982).

    Article  CAS  Google Scholar 

  38. F. Sakamaki and H. Akimoto, Int. J. Chem. Kinet. 20, 111 (1988).

    Article  CAS  Google Scholar 

  39. A.C. Besemer and H. Nieboer, Atmos. Environ. 19, 507 (1985).

    Article  CAS  Google Scholar 

  40. R. Svensson, E. Ljungström, and O. Lindqvist, Atmos. Environ. 21, 1529 (1987).

    Article  CAS  Google Scholar 

  41. H. Akimoto, H. Takagi, and F. Sakamaki, Int. J. Chem. Kinet. 19, 539 (1987).

    Article  CAS  Google Scholar 

  42. M.E. Jenkin, R.A. Cox, and D.J. Williams, Atmos. Environ. 22, 487 (1988).

    Article  CAS  Google Scholar 

  43. W. A. Glasson and A.M. Dunker, Environ. Sci. Technol. 23, 970 (1989).

    Article  CAS  Google Scholar 

  44. C. Perrino, F. De Santis, and A Febo, Atmos. Environ. 22, 1925 (1988).

    Article  CAS  Google Scholar 

  45. J.E. Sickles, II and L.L. Hodson, Atmos. Environ. 23, 2321 (1989).

    Article  CAS  Google Scholar 

  46. G.R. Appel. Atmos. Environ. 24A, 717 (1990).

    Google Scholar 

  47. E. Sanhueza, C.N. Plum, and J.N. Pitts, Jr., Atmos. Environ. 18, 1029 (1984).

    Article  CAS  Google Scholar 

  48. I. Allegrini, F. De Santis, V. Di Palo, A. Febo, C. Perrino, M. Possanzini, and A. Leberti, Sci. Total Environ. 67, 1 (1987).

    Article  CAS  Google Scholar 

  49. J.P. Killus and G.Z. Whitten, Int. J. Chem. Kinet. 22, 547 (1990).

    Article  CAS  Google Scholar 

  50. W. Junkermann and T. Ibusuki, Atm. Environ. 26A, 3099 (1992).

    Google Scholar 

  51. B. Finlayson-Pitts, Nature 306, 676 (1983).

    Article  CAS  Google Scholar 

  52. F.W. Lurmann, W.P.L. Carter, and L.A. Coyner, A Surrogate Species Chemical Reaction Mechanism for Urban-scale Air Quality Simulation Models, Volume II - Guidelines for Using the Mechanism, Report for EPA Contract No. 68-02-4104 February, 1987.

  53. A. Sjödin and M. Ferm, Authors reply, Atmos. Environ. 20, 409 (1986).

    Article  Google Scholar 

  54. R. Atkinson, W.P.L. Carter, J. N. Pitts, Jr., and A.M. Winer, Atmos. Environ. 20, 408 (1986).

    Article  Google Scholar 

  55. I.W.M. Smith and G. Yarwood, Chem. Phys. Lett. 130, 24 (1986).

    Article  CAS  Google Scholar 

  56. M. Mozurkewich and J.G. Calvert, J. Geophys. Res. 93, 15889 (1988).

    Article  Google Scholar 

  57. A. Fried, B.E. Henry, J.G. Calvert, and M. Mozurkewich, J. Geochem. Res. (1993), accepted for publication.

  58. The authors are grateful to Dr. Bart Croes of the California Air Resources Board for providing them with all of the data for the SCAQS study of 1987.

  59. R.E. Morris and T.C. Myers, User’s Guide for the Urban Airshed Model, Volume I: User’s Manual for UAM (CB-IV), U.S. Environmental Protection Agency (EPA-450/4-90-007A), 1990.

  60. M.W. Gery, G.Z. Whitten, J.P. Killus, and M.C. Dodge, J. Geophy. Res. 94(D10), 12,925 (1989).

    Article  CAS  Google Scholar 

  61. K.K. Wagner and N.J. Wheeler, In: Tropospheric Ozone and the Environment II, Vol. 20, R.L. Berglund (Ed.), pp. 256–266, Air Waste Management Association, Pittsburgh (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvert, J.G., Yarwood, G. & Dunker, A.M. An evaluation of the mechanism of nitrous acid formation in the urban atmosphere. Res Chem Intermed 20, 463–502 (1994). https://doi.org/10.1163/156856794X00423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856794X00423

Keywords

Navigation