Advertisement

Research on Chemical Intermediates

, Volume 20, Issue 6, pp 635–679 | Cite as

Sonochemistry I. Effects of ultrasounds on heterogeneous chemical reactions – a useful tool to generate radicals and to examine reaction mechanisms

  • N. Serpone
  • P. Colarusso
Article

Abstract

Application of ultrasound to a system that contains at least one liquid phase produces microscopic bubbles in the liquid which undergo periodic expansions and contractions. Some of these microbubbles eventually destabilize and collapse violently, generating temperatures in the thousands of degrees Kelvin and pressures in the hundreds of atmospheres. This phenomenon, known as cavitational implosion, favors the production of free solvent radicals that react amongst themselves and with other substrates in the system. In addition, ultrasound accelerates reactions that involve single electron transfers but seems to have no effect on reactions that proceed via ionic mechanisms for reasons that remain unclear. In practical terms, ultrasound allows the synthesis of novel compounds as well as the improved preparations of standard compounds. Sonication is more than just more efficient stirring. The high temperatures produced on cavitation, both in the cavity and at the interface, could lead to molecular combustion of the substrate and of the solvent to form radical species which could then initiate reactions.

Keywords

Cavitation Ultrasonic Wave Ultrasonic Irradiation Benzyl Bromide Single Electron Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.J. Mason. In: Chemistry with Ultrasound, T.J. Mason (Ed.). Ch. 1, pp. 1–26, Elsevier Applied Science; London (1990).Google Scholar
  2. 2.
    S.V. Ley and C.M.R. Low, Ultrasound in Synthesis, Springer-Verlag, London (1989).Google Scholar
  3. 3.
    T.J. Mason and J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood Limited, Chichester (1988).Google Scholar
  4. 4.
    T.J. Mason (Ed.). Sonochemistry: The Uses of Ultrasound in Chemistry, The Royal Society of Chemistry, Cambridge (1990).Google Scholar
  5. 5.
    T.J. Mason, Practical Sonochemistry, Ellis Horwood Ltd., London (1991).Google Scholar
  6. 6.
    K.S. Suslick (Ed.). Ultrasound: Its Chemical, Physical and Biological Effects, VCH Publishers, New York (1988).Google Scholar
  7. 7.
    N. Serpone and P. Colarusso, Res.Chem.Intermed., in press.Google Scholar
  8. 8.
    F. Crawford, Waves, McGraw-Hill Book Co., New York (1968).Google Scholar
  9. 9.
    I.E. El’piner, Ultrasound — Physical, Chemical, and Biological Effects, Consultants Bureau, New York (1964).Google Scholar
  10. 10.
    A.P. Cracknell, Ultrasonics, Wykeham Publications Ltd., London (1980).Google Scholar
  11. 11.
    A. P. Bhatia, Ultrasonics, Wykeham Publications Ltd., London (1980).Google Scholar
  12. 12.
    V.A. Shutilov, Fundamental Physics of Ultrasound, Gordon and Breach Science Publishers, New York (1988). 13. A.A. Atchleyand L.A. Crum, in ref. 6, pp. 1-64.Google Scholar
  13. 14.
    T.F. Heuter and R.H. Bolt, Sonics, John Wiley & Sons, Inc., New York (1955).Google Scholar
  14. 15.
    R.E. Apfel. In: Methods of Experimental Physics, P.D. Edmonds, (Ed.), vol. 19, pp. 255–411, Academic Press, New York (1981).Google Scholar
  15. 16.
    K.S. Suslick, D.A. Hammerton, and R.E. Cline, J. Am. Chem. Soc., 108, 5641 (1986).CrossRefGoogle Scholar
  16. 17.
    K.S. Suslick, in ref. 6, pp. 123-163.Google Scholar
  17. 18.
    R.E. Verrall and C.M. Sehgal, in ref. 6, p 231.Google Scholar
  18. 19.
    P. Riesz, T. Kondo, and C. Murali Krishna, Ultrasonics, 28, 295 (1990).CrossRefGoogle Scholar
  19. 20.
    C.-H. Fischer, E. Hart, and A. Henglein, J. Phys. Chem., 90, 223 (1986).Google Scholar
  20. 21.
    C.-H. Fischer, E. Hart, and A. Henglein, J. Phys. Chem., 90, 1955 (1986).Google Scholar
  21. 22.
    C.-H. Fischer. E. Hart, and A. Henglein. J. Phvs. Chem., 90, 3059 (1986).CrossRefGoogle Scholar
  22. 23.
    E. Hart and A. Henglein, J. Phys. Chem., 91, 3654 (1987).CrossRefGoogle Scholar
  23. 24.
    J. Büttener and A. Henglein, J. Phys. Chem., 95, 1528 (1991).CrossRefGoogle Scholar
  24. 25.
    E. Hart, C.-H. Fischer, and A. Henglein, J. Phys, Chem., 94, 284 (1990).CrossRefGoogle Scholar
  25. 26.
    E. Hart and A. Henglein, J. Phys, Chem., 90, 3061 (1986).CrossRefGoogle Scholar
  26. 27.
    E. Hart, and A. Henglein, J. Phys, Chem., 90, 5992 (1986).CrossRefGoogle Scholar
  27. 28.
    M. Gutiérrez and A. Henglein, J. Phys, Chem., 92, 2978 (1988).CrossRefGoogle Scholar
  28. 29.
    M. Gutiérrez, A. Henglein, and C.-H. Fischer, Int. J. Radiat. Biol. Relat. Stud. Phys., Chem., Med., 90, 222 (1986).Google Scholar
  29. 30.
    K.S. Suslick. In: High-Energy Processes in Organometallic Chemistry, K.S. Suslick (Ed.), p. 208, American Chemical Society, Washington (1987).Google Scholar
  30. 31.
    K.S. Suslick and S.J. Doktycz, Adv. Sonochem., 1, 197 (1990).Google Scholar
  31. 32.
    J.A. Rooney, in ref. 6, pp. 65-96.Google Scholar
  32. 33.
    A. Henglein and C.-H. Fischer, Ber. Bunsenges Phys. Chem., 88, 1196 (1984).Google Scholar
  33. 34.
    K.S. Suslick, J.J. Gawlenowski, P.F. Schubert, and H.H. Wang, J. Phys. Chem., 87, 2299 (1983).CrossRefGoogle Scholar
  34. 35.
    D. Bremner, Adv. Sonochem., 1, 1 (1990).Google Scholar
  35. 36.
    R.L. Hunicke, Ultrasonics, 28, 291 (1990).CrossRefGoogle Scholar
  36. 37.
    J.L. Luche, Adv. Sonochem., 1, 119 (1990).Google Scholar
  37. 38.
    J. de Souza-Barboza, C. Pétrier, and J.L. Luche, J. Org. Chem., 53, 1213 (1988).Google Scholar
  38. 39.
    J.L. Luche, C. Einhorn, J. Einhorn, J.C. de Souza-Barboza, C. Pétrier, C Dupuy, P. Declair, C. Allavena, and T. Tuschl, Ultrasonics, 28, 316 (1990).CrossRefGoogle Scholar
  39. 40.
    C. Einhorn, J. Einhorn, and J.L. Luche, Synthesis, 11, 787 (1989).CrossRefGoogle Scholar
  40. 41.
    J. de Souza-Barboza, J.L. Luche, and C. Pétrier, C., Tetrahedron Lett., 28, 2013 (1987).CrossRefGoogle Scholar
  41. 42.
    J.L. Luche, Ultrasonics, 25, 40 (1987).CrossRefGoogle Scholar
  42. 44.
    G.E. Grechnev, Sov. J. Low Temp. Phys., 11, 55 (1985).Google Scholar
  43. 45.
    M.J. Dickens and J.L. Luche, Tetrahedron Lett., 32, 4709 (1991).CrossRefGoogle Scholar
  44. 47.
    M. Chanon, Bull. Soc. Chim. Fr. II, 209 (1985).Google Scholar
  45. 48.
    I.T. Badejo, R. Karaman, N.W.I. Lee, E.C. Lutz, M.T. Mamanta, and J.L. Fry, J. Chem. Soc., Chem. Commun., 566 (1989).Google Scholar
  46. 49.
    R. Karaman and J.L. Fry, Tetrahedron Lett., 30, 4931 (1989).CrossRefGoogle Scholar
  47. 50.
    R. Karaman and J.L. Fry, Tetrahedron Lett., 301 4935 (1989).CrossRefGoogle Scholar
  48. 51.
    R. Karaman, D.T. Kohlman, and J.L. Fry, Tetrahedron Lett., 31, 6155 (1990).CrossRefGoogle Scholar
  49. 52.
    A.G. Osborne, K.J. Glass, and M.L. Stanley, Tetrahedron Lett., 30, 3567 (1989).CrossRefGoogle Scholar
  50. 53.
    P.E. Fanta, Chem. Rev., 64, 613 (1964).CrossRefGoogle Scholar
  51. 54.
    T. Kitazume, Ultrasonics, 28, 322 (1990).CrossRefGoogle Scholar
  52. 55.
    T. Kitazume, T. Ohnogi, H. Miyauchi, T. Yamazaki, and S. Watanabe, J. Org. Chem. 54, 5632 (1989).CrossRefGoogle Scholar
  53. 56.
    T. Ando and T. Kimura, Ultrasonics, 28, 326 (1990).CrossRefGoogle Scholar
  54. 57.
    T. Ando, S. Sumi, T. Kawate, J. Ichihara, and T. Hanafusa, J. Chem. Soc., Chem. Commun., 439 (1984).Google Scholar
  55. 58.
    A. Fadel, Tetrahedron, 47, 6265 (1991).CrossRefGoogle Scholar
  56. 59.
    G.A. Olah, A.-H. Wu, and O. Farooq, Synth. Commun., 19, 566 (1989).Google Scholar
  57. 60.
    G.A. Olah and A.-H. Wu, Synthesis, 13, 204 (1991).CrossRefGoogle Scholar
  58. 61.
    A.A. Madjdabadi, R. Beugelmans, and A. Lechevallier, Synth. Commun., 19, 1631 (1989).CrossRefGoogle Scholar
  59. 62.
    J. Ichihara and T. Hanafusa, J. Chem. Soc. Chem. Commun., 1848 (1989).Google Scholar
  60. 63.
    J. Ichihara, K. Funabiki, and T. Hanafusa, Tetrahedron Lett., 31, 1848 (1989).Google Scholar
  61. 64.
    J.C. Cochran and M. Melville, Synth. Commun., 20, 609 (1990).CrossRefGoogle Scholar
  62. 65.
    G. Etemad-Moghadam, M. Rifqui, P. Layrolle, J. Berlan, and M. Koenig, Tetrahedron Lett., 42, 5965 (1989).Google Scholar
  63. 66.
    B. C. Ranu and M.K. Basu, Tetrahedron Lett., 32, 3243 (1991).CrossRefGoogle Scholar
  64. 67.
    P. Brégaint, J.R. Hamon, and C. Lapinte, J. Organometal. Chem., 398, C25 (1990).CrossRefGoogle Scholar
  65. 68.
    R.S. Bates, M.J. Begley, and A.H. Wright, Polyhedron, 9, 1113 (1990).CrossRefGoogle Scholar
  66. 69.
    R.S. Bates and A.H. Wright, J. Chem. Soc. Chem. Commun., 1129 (1990).Google Scholar

Copyright information

© Springer 1994

Authors and Affiliations

  • N. Serpone
    • 1
  • P. Colarusso
    • 1
  1. 1.Laboratory of Pure and Applied Studies in Catalysis, Environment and Materials, Department of Chemistry and BiochemistryConcordia UniversityMontrealCANADA

Personalised recommendations