Skip to main content
Log in

Sonochemistry I. Effects of ultrasounds on heterogeneous chemical reactions – a useful tool to generate radicals and to examine reaction mechanisms

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Application of ultrasound to a system that contains at least one liquid phase produces microscopic bubbles in the liquid which undergo periodic expansions and contractions. Some of these microbubbles eventually destabilize and collapse violently, generating temperatures in the thousands of degrees Kelvin and pressures in the hundreds of atmospheres. This phenomenon, known as cavitational implosion, favors the production of free solvent radicals that react amongst themselves and with other substrates in the system. In addition, ultrasound accelerates reactions that involve single electron transfers but seems to have no effect on reactions that proceed via ionic mechanisms for reasons that remain unclear. In practical terms, ultrasound allows the synthesis of novel compounds as well as the improved preparations of standard compounds. Sonication is more than just more efficient stirring. The high temperatures produced on cavitation, both in the cavity and at the interface, could lead to molecular combustion of the substrate and of the solvent to form radical species which could then initiate reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.J. Mason. In: Chemistry with Ultrasound, T.J. Mason (Ed.). Ch. 1, pp. 1–26, Elsevier Applied Science; London (1990).

    Google Scholar 

  2. S.V. Ley and C.M.R. Low, Ultrasound in Synthesis, Springer-Verlag, London (1989).

    Google Scholar 

  3. T.J. Mason and J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood Limited, Chichester (1988).

    Google Scholar 

  4. T.J. Mason (Ed.). Sonochemistry: The Uses of Ultrasound in Chemistry, The Royal Society of Chemistry, Cambridge (1990).

    Google Scholar 

  5. T.J. Mason, Practical Sonochemistry, Ellis Horwood Ltd., London (1991).

    Google Scholar 

  6. K.S. Suslick (Ed.). Ultrasound: Its Chemical, Physical and Biological Effects, VCH Publishers, New York (1988).

    Google Scholar 

  7. N. Serpone and P. Colarusso, Res.Chem.Intermed., in press.

  8. F. Crawford, Waves, McGraw-Hill Book Co., New York (1968).

    Google Scholar 

  9. I.E. El’piner, Ultrasound — Physical, Chemical, and Biological Effects, Consultants Bureau, New York (1964).

    Google Scholar 

  10. A.P. Cracknell, Ultrasonics, Wykeham Publications Ltd., London (1980).

    Google Scholar 

  11. A. P. Bhatia, Ultrasonics, Wykeham Publications Ltd., London (1980).

    Google Scholar 

  12. V.A. Shutilov, Fundamental Physics of Ultrasound, Gordon and Breach Science Publishers, New York (1988). 13. A.A. Atchleyand L.A. Crum, in ref. 6, pp. 1-64.

    Google Scholar 

  13. T.F. Heuter and R.H. Bolt, Sonics, John Wiley & Sons, Inc., New York (1955).

    Google Scholar 

  14. R.E. Apfel. In: Methods of Experimental Physics, P.D. Edmonds, (Ed.), vol. 19, pp. 255–411, Academic Press, New York (1981).

    Google Scholar 

  15. K.S. Suslick, D.A. Hammerton, and R.E. Cline, J. Am. Chem. Soc., 108, 5641 (1986).

    Article  CAS  Google Scholar 

  16. K.S. Suslick, in ref. 6, pp. 123-163.

  17. R.E. Verrall and C.M. Sehgal, in ref. 6, p 231.

  18. P. Riesz, T. Kondo, and C. Murali Krishna, Ultrasonics, 28, 295 (1990).

    Article  CAS  Google Scholar 

  19. C.-H. Fischer, E. Hart, and A. Henglein, J. Phys. Chem., 90, 223 (1986).

    Google Scholar 

  20. C.-H. Fischer, E. Hart, and A. Henglein, J. Phys. Chem., 90, 1955 (1986).

    Google Scholar 

  21. C.-H. Fischer. E. Hart, and A. Henglein. J. Phvs. Chem., 90, 3059 (1986).

    Article  Google Scholar 

  22. E. Hart and A. Henglein, J. Phys. Chem., 91, 3654 (1987).

    Article  CAS  Google Scholar 

  23. J. Büttener and A. Henglein, J. Phys. Chem., 95, 1528 (1991).

    Article  Google Scholar 

  24. E. Hart, C.-H. Fischer, and A. Henglein, J. Phys, Chem., 94, 284 (1990).

    Article  CAS  Google Scholar 

  25. E. Hart and A. Henglein, J. Phys, Chem., 90, 3061 (1986).

    Article  CAS  Google Scholar 

  26. E. Hart, and A. Henglein, J. Phys, Chem., 90, 5992 (1986).

    Article  CAS  Google Scholar 

  27. M. Gutiérrez and A. Henglein, J. Phys, Chem., 92, 2978 (1988).

    Article  Google Scholar 

  28. M. Gutiérrez, A. Henglein, and C.-H. Fischer, Int. J. Radiat. Biol. Relat. Stud. Phys., Chem., Med., 90, 222 (1986).

    Google Scholar 

  29. K.S. Suslick. In: High-Energy Processes in Organometallic Chemistry, K.S. Suslick (Ed.), p. 208, American Chemical Society, Washington (1987).

    Google Scholar 

  30. K.S. Suslick and S.J. Doktycz, Adv. Sonochem., 1, 197 (1990).

    CAS  Google Scholar 

  31. J.A. Rooney, in ref. 6, pp. 65-96.

  32. A. Henglein and C.-H. Fischer, Ber. Bunsenges Phys. Chem., 88, 1196 (1984).

    CAS  Google Scholar 

  33. K.S. Suslick, J.J. Gawlenowski, P.F. Schubert, and H.H. Wang, J. Phys. Chem., 87, 2299 (1983).

    Article  CAS  Google Scholar 

  34. D. Bremner, Adv. Sonochem., 1, 1 (1990).

    CAS  Google Scholar 

  35. R.L. Hunicke, Ultrasonics, 28, 291 (1990).

    Article  CAS  Google Scholar 

  36. J.L. Luche, Adv. Sonochem., 1, 119 (1990).

    CAS  Google Scholar 

  37. J. de Souza-Barboza, C. Pétrier, and J.L. Luche, J. Org. Chem., 53, 1213 (1988).

    Google Scholar 

  38. J.L. Luche, C. Einhorn, J. Einhorn, J.C. de Souza-Barboza, C. Pétrier, C Dupuy, P. Declair, C. Allavena, and T. Tuschl, Ultrasonics, 28, 316 (1990).

    Article  CAS  Google Scholar 

  39. C. Einhorn, J. Einhorn, and J.L. Luche, Synthesis, 11, 787 (1989).

    Article  Google Scholar 

  40. J. de Souza-Barboza, J.L. Luche, and C. Pétrier, C., Tetrahedron Lett., 28, 2013 (1987).

    Article  Google Scholar 

  41. J.L. Luche, Ultrasonics, 25, 40 (1987).

    Article  CAS  Google Scholar 

  42. G.E. Grechnev, Sov. J. Low Temp. Phys., 11, 55 (1985).

    Google Scholar 

  43. M.J. Dickens and J.L. Luche, Tetrahedron Lett., 32, 4709 (1991).

    Article  CAS  Google Scholar 

  44. M. Chanon, Bull. Soc. Chim. Fr. II, 209 (1985).

  45. I.T. Badejo, R. Karaman, N.W.I. Lee, E.C. Lutz, M.T. Mamanta, and J.L. Fry, J. Chem. Soc., Chem. Commun., 566 (1989).

  46. R. Karaman and J.L. Fry, Tetrahedron Lett., 30, 4931 (1989).

    Article  CAS  Google Scholar 

  47. R. Karaman and J.L. Fry, Tetrahedron Lett., 301 4935 (1989).

    Article  Google Scholar 

  48. R. Karaman, D.T. Kohlman, and J.L. Fry, Tetrahedron Lett., 31, 6155 (1990).

    Article  CAS  Google Scholar 

  49. A.G. Osborne, K.J. Glass, and M.L. Stanley, Tetrahedron Lett., 30, 3567 (1989).

    Article  CAS  Google Scholar 

  50. P.E. Fanta, Chem. Rev., 64, 613 (1964).

    Article  CAS  Google Scholar 

  51. T. Kitazume, Ultrasonics, 28, 322 (1990).

    Article  CAS  Google Scholar 

  52. T. Kitazume, T. Ohnogi, H. Miyauchi, T. Yamazaki, and S. Watanabe, J. Org. Chem. 54, 5632 (1989).

    Article  Google Scholar 

  53. T. Ando and T. Kimura, Ultrasonics, 28, 326 (1990).

    Article  CAS  Google Scholar 

  54. T. Ando, S. Sumi, T. Kawate, J. Ichihara, and T. Hanafusa, J. Chem. Soc., Chem. Commun., 439 (1984).

  55. A. Fadel, Tetrahedron, 47, 6265 (1991).

    Article  CAS  Google Scholar 

  56. G.A. Olah, A.-H. Wu, and O. Farooq, Synth. Commun., 19, 566 (1989).

    Google Scholar 

  57. G.A. Olah and A.-H. Wu, Synthesis, 13, 204 (1991).

    Article  Google Scholar 

  58. A.A. Madjdabadi, R. Beugelmans, and A. Lechevallier, Synth. Commun., 19, 1631 (1989).

    Article  CAS  Google Scholar 

  59. J. Ichihara and T. Hanafusa, J. Chem. Soc. Chem. Commun., 1848 (1989).

  60. J. Ichihara, K. Funabiki, and T. Hanafusa, Tetrahedron Lett., 31, 1848 (1989).

    Google Scholar 

  61. J.C. Cochran and M. Melville, Synth. Commun., 20, 609 (1990).

    Article  CAS  Google Scholar 

  62. G. Etemad-Moghadam, M. Rifqui, P. Layrolle, J. Berlan, and M. Koenig, Tetrahedron Lett., 42, 5965 (1989).

    Google Scholar 

  63. B. C. Ranu and M.K. Basu, Tetrahedron Lett., 32, 3243 (1991).

    Article  CAS  Google Scholar 

  64. P. Brégaint, J.R. Hamon, and C. Lapinte, J. Organometal. Chem., 398, C25 (1990).

    Article  Google Scholar 

  65. R.S. Bates, M.J. Begley, and A.H. Wright, Polyhedron, 9, 1113 (1990).

    Article  CAS  Google Scholar 

  66. R.S. Bates and A.H. Wright, J. Chem. Soc. Chem. Commun., 1129 (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serpone, N., Colarusso, P. Sonochemistry I. Effects of ultrasounds on heterogeneous chemical reactions – a useful tool to generate radicals and to examine reaction mechanisms. Res. Chem. Intermed. 20, 635–679 (1994). https://doi.org/10.1163/156856794X00261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856794X00261

Keywords

Navigation