Advertisement

Multiple fluorescence spectra of fluorescein molecules encapsulated in the silica xerogel prepared by the sol-gel reaction

  • T. Fujii
  • A. Ishii
  • Y. Kurihara
  • M. Anpo
Article

Abstract

The fluorescence and fluorescence-excitation spectra of fluorescein molecules during the sol-gel-xerogel transitions of tetraethyl orthosilicate (TEOS) solutions have been observed as functions of doped concentration, in the order of 10-2 and 10-5 mol dm-3, and of the sol-gel-xerogel transition time. It was shown that with a lower initial concentration only the cation was encapsulated in the pores of the silica xerogel state during the sol-gel reaction processes. On the other hand, with a high concentration four species, i.e., cation, monoanion, dianion, and dimer, were encapsulated in the silica xerogel during the sol-gel reaction processes. These results have the potential to open the way to the development of simultaneous multiple-band solid-state laser emitting materials.

Keywords

Fluorescence Spectrum Peak Wavelength Tetraethyl Orthosilicate Silica Xerogel Vycor Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Anpo and T. Matsuura (Eds.), Photochemistry on Solid Surfaces, Elsevier, Amsterdam, 1989.Google Scholar
  2. 2.
    J.D. Mackenzie and D.R. Ulrich (Eds.), Ultrastructure Processing of Advanced Ceramics, Wiley, New York, 1988.Google Scholar
  3. 3.
    S. Sakka, Zoru Geru Houno Kagaku (Science of the Sol-Gel Method), Agune Shoufuusha, Tokyo, 1988.Google Scholar
  4. 4.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science — The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.Google Scholar
  5. 5.
    H. Dislich, Angew. Chem. Int. Ed. 10, 363 (1971); idem., J. Non-Cryst. Solids 57, 371 (1983).CrossRefGoogle Scholar
  6. 6.
    B.E. Yoldas, J. Mater. Sci. 12, 1203 (1977).CrossRefGoogle Scholar
  7. 7.
    S. Sakka and K. Kamiya. J. Non-Cryst. Solids 42, 403 (1980).CrossRefGoogle Scholar
  8. 8.
    S.P. Mukherjee, J. Non-Cryst. Solids 42, 477 (1980).CrossRefGoogle Scholar
  9. 9.
    C.J. Brinker, G.W. Scherer, J. Non-Cryst. Solids 70, 301 (1985); C.J. Brinker, G.W. Scherer, and E.P. Roth, ibid, 72, 345 (1985); G.W. Scherer, C.J. Brinker, and E.P. Roth, ibid, 72, 369 (1985).CrossRefGoogle Scholar
  10. 10.
    R. Roy, Science 238, 16641 (1987).CrossRefGoogle Scholar
  11. 11.
    J.D. Mackenzie, J. Non-Cryst. Solids 100, 162 (1988).CrossRefGoogle Scholar
  12. 12.
    L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).CrossRefGoogle Scholar
  13. 13.
    C.J. Brinker, A.J. Hurd, G.C. Frye, P.R. Schunk, and C.S. Ashley, J. Cer. Soc. Jpn. 99, 862 (1991).Google Scholar
  14. 14.
    S. Hirano, T. Yogo, and K. Kikuta, J. Cer. Soc. Jpn. 99, 1026 (1991).Google Scholar
  15. 15.
    G.L. Messing and W.T. Minehan, J. Cer. Soc. Jpn. 99, 1036 (1991).Google Scholar
  16. 16.
    B. Dunn and J.I. Zink, J. Mat. Chem. 1 903 (1991); J.I. Zink and D.S. Dunn, N. Ceram. Soc. Jpn. 99, 878 (1991).CrossRefGoogle Scholar
  17. 17.
    T. Fujii, Hyoumen (Surface) 30, 821 (1992).Google Scholar
  18. 18.
    D. Avnir, S. Braun, and M. Ottolenghi, ACS Symposium Series 499, 384 (1992).CrossRefGoogle Scholar
  19. 19.
    D. Avnir, D. Levy, and R. Reisfeld, J. Phys. Chem. 88, 5956 (1984); D. Avnir, V.R. Kaufman, and R. Reisfeld, J. Non-Cryst. Solids 74, 395 (1985).CrossRefGoogle Scholar
  20. 20.
    T. Tani, H. Namikawa, K. Arai, and A. Makishima, J. Appl. Phys. 58, 3559 (1985); A. Makishima and T. Tani, J. Am. Ceram. Soc 69, C-72 (1986).CrossRefGoogle Scholar
  21. 21.
    Y. Kobayashi, Y. Imai, and Y. Kurokawa, J. Mater. Sci. Lett 7, 1148 (1988).CrossRefGoogle Scholar
  22. 22.
    J. McKiernan, J.C. Pouxviel, B. Dunn, and J.I. Zink, J. Phys. Chem. 93, 2129 (1989).CrossRefGoogle Scholar
  23. 23.
    K. Matsui, T. Namikawa, and H. Fujita, J. Phys. Chem. 93, 4991 (1989).CrossRefGoogle Scholar
  24. 24.
    Y. Takahashi, T. Kitamura, K. Uchida, and T. Yamanaka, Jpn. J. Appl. Phys. 28, L 1609 (1989).CrossRefGoogle Scholar
  25. 25.
    T. Fujii, A. Ishii, H. Nagai, M. Niwano, N. Negishi, and M. Anpo, Chem. Express 4, 1 (1989).Google Scholar
  26. 26.
    R. Winter, D.W. Hua, X. Song, W. Mantulin, and J. Jonas, J. Phys. Chem. 94, 2706 (1990).CrossRefGoogle Scholar
  27. 27.
    T. Fujii, A. Ishii, N. Takusagawa, and M. Anpo, Res. Chem. Intermed. 17, 1 (1992).CrossRefGoogle Scholar
  28. 28.
    Th. Foerster and E. Koenig, A. Electrochem. 61, 344 (1957).Google Scholar
  29. 29.
    V. Zanker and W. Peter, Chem. Ber. 91, 572 (1958).CrossRefGoogle Scholar
  30. 30.
    L. Lindqvist, Arkiv. Kemi. 16, 79 (1960).Google Scholar
  31. 31.
    H. Leonhardt, L. Gordon, and R. Livingston, J. Phys. Chem., 75, 245 (1971).CrossRefGoogle Scholar
  32. 32.
    M. Rozwadowskii, Acta Phys. Polon. 20, 1005 (1961).Google Scholar
  33. 33.
    T. Fujii, Y. Murata, and M. Matsui, Res. Chem. Intermed. 18, 87 (1992).CrossRefGoogle Scholar

Copyright information

© VSP 1993

Authors and Affiliations

  • T. Fujii
    • 1
  • A. Ishii
    • 1
  • Y. Kurihara
    • 1
  • M. Anpo
    • 2
  1. 1.Department of Chemistry and Materials Engineering, Faculty of EngineeringShinshu UniversityWakasato, NaganoJapan
  2. 2.Department of Applied ChemistryUniversity of Osaka PrefectureSakai, OsakaJapan

Personalised recommendations