Research on Chemical Intermediates

, Volume 18, Issue 1, pp 87–103 | Cite as

Multiple fluorescence spectra and stable encapsulation of 7-hydroxy-4-methylcoumarin and rhodamine 6g in silicate glasses by the sol-gel method

  • T. Fujii
  • Y. Murata
  • M. Matsui
Article

Abstract

7-Hydroxy-4-methylcoumarin(4-methylumbelliferone, HMC) and Rhodamine 6G(R6G) were encapsulated into silicate polymeric glass prepared by the sol-gel method under acidic, basic, and neutral conditions from tetraethyl orthosilicate. The fluorescence spectra of these molecules encapsulated into the xerogel state depend on the used catalysts. Three types of fluorescence emissions having peak wavelengths of ca. 390 nm, 470 nm, and 550 run, respectively, were observed simultaneously in the xerogel state composed of HMC and R6G which were prepared by acid catalysts. The encapsulated HMC remains stable for more than one year in the prepared xerogel. The results open the way to the development of simultaneous three-band laser emissions. The observation of the fluorescence spectrum of HMC is useful for a molecular level photophysical probe elucidating the structural changes oftetraethyl orthosilicate during sol to gel to xerogel transitions.

Keywords

Fluorescence Spectrum Tetraethyl Orthosilicate Zink Fluorescence Band Fluorescent Component 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.P. Schaefer (Ed.), Dye Lasers, Springer-Verlag, Berlin, 1973.Google Scholar
  2. 2.
    C.V. Shank, A. Dienes, A.M. Trozzolo, and J.A. Myer, Appl. Phys. Lett., 16(1970)405.CrossRefGoogle Scholar
  3. 3.
    A. Dienes, C.V. Shank, and A.M. Trozzolo, Appl. Phys. Lett., 17(1970)189.CrossRefGoogle Scholar
  4. 4.
    A.M. Trozzolo, A. Dienes, and C.V. Shank, J. Am. Chem. Soc., 96(1974)4699.CrossRefGoogle Scholar
  5. 5.
    D.W. Fink and W.R. Koehler, Anal. Chem., 42(1970)990.CrossRefGoogle Scholar
  6. 6.
    G.J. Yakatan, R.J. Juneau, and S.G. Schulman, Anal. Chem., 44(1972)1044.CrossRefGoogle Scholar
  7. 7.
    J.R. Huber, M. Nakashima, and J.A. Sousa, J. Phys. Chem., 77(1973)860.CrossRefGoogle Scholar
  8. 8.
    J.I. Zink and W. Klimt, J. Am. Chem. Soc., 96(1974)4690.CrossRefGoogle Scholar
  9. 9.
    G.S. Beddard, S. Carlin, and R.S. Davidson, J. Chem. Soc. Perkin II, (1977)262.Google Scholar
  10. 10.
    S.G. Schulman and L.S. Rosenberg, J. Phys. Chem., 83(1979)447.CrossRefGoogle Scholar
  11. 11.
    T. Moriya, Bull. Chem. Soc. Jpn., 56(1983)6; ibid., 57(1984)1723.CrossRefGoogle Scholar
  12. 12.
    M.S.A. Abdel-Mottaleb, B.A. EI-Sayed, M.M. Abo-Aly, and M.Y. El-Kaday, J. Photochem. Photobiol. A: Chem., 46(1989)379.CrossRefGoogle Scholar
  13. 13.
    J.M. McKiernan, S.A. Yamanaka, E. Knobbe, J.C. Pouxviel, S. Parvaneh, B. Dunn, and J.I. Zink, J. Inorg. Organomet. Polymers, 1(1991)87.CrossRefGoogle Scholar
  14. 14.
    D. Avnir, D. Levy, and R. Reisfeld, J. Phys. Chem., 88(1984)5956; D. Avnir, V.R. Kaufman, and R. Reisfeld, J. Non-Cryst. Solids, 74((1985)395.CrossRefGoogle Scholar
  15. 15.
    D.A. Gromov, K.M. Dyumaev, A.A. Manenkov, A.P. Maslyukov, G.A. Matyushin, VS. Nechitailo, and A.M. Prokhorov, J. Opt. Soc. Am., B2(1985)1028.Google Scholar
  16. 16.
    S. Muto, H. Uchida, K. Nakamura, C. Ito, and H. Inaba, Trans. IECE Jpn., 69(1986)376; S. Muto. F. Shiba, Y. Iijima, K. Hattori, and C. Ito, Trans. IECE Jpn., J69-C 1 (1986)25.Google Scholar
  17. 17.
    R. Reisfeld, J. Phys. (Paris), 48(1987)C7–423; M. Eyal, R. Gvishi and R. Reisfeld, ibid., 48(1987)C7-471.CrossRefGoogle Scholar
  18. 18.
    Y. Kobayashi, Y. Kurokawa, Y. Imai, and S. Muto, J. Non-Cryst. Solids, 105(1988)198; H. Sasaki, Y. Kobayashi, S. Muto, and Y. Kurokawa, J. Am. Ceram. Soc., 73(1990)453.CrossRefGoogle Scholar
  19. 19.
    F. Salin, G. Le Saux, P. Gerorges, A. Brun, C. Bagnall, and J. Zarzycki, Opt. Lett., 14(1989)785.CrossRefGoogle Scholar
  20. 20.
    E.T. Knobbe, B. Dunn, P.D. Fuqua, and F. Nishida, Appl. Opt., 29(1990)2729.CrossRefGoogle Scholar
  21. 21.
    J.M. McKiernan, S.A. Yamanaka, B. Dunn, and J.I. Zink, J. Phys. Chem., 94(1990)5652.CrossRefGoogle Scholar
  22. 22.
    T. Fujii, A. Ishii, and M. Anpo, J. Photochem. Photobiol. A: Chem., 54(1990)231; T Fujii, O. Kawauchi, Y. Kurihara, A. Ishii, N. Negishi, and M. Anpo, Chem. Express, 5(1990)917.CrossRefGoogle Scholar
  23. 23.
    B. Dunn and J.I. Zink, J. Mater. Chem., 1(1991)903; J.I. Zink and B.S. Dunn, J. Ceram. Soc. Jpn., 99(1991)878.CrossRefGoogle Scholar
  24. 24.
    S.P. Mukherjee, J. Zarzycki, and J.P. Traverse, J. Mater. Sci., 11(1976)341.CrossRefGoogle Scholar
  25. 25.
    M. Yamane, S. Aso, and T. Sakaino, J. Mater. Sci., 13(1978)865; M. Yamane, S. Aso, S. Okano, and T. Sakaino, J. Mater. Sci., 14(1979)607.CrossRefGoogle Scholar
  26. 26.
    S. Sakka and K. Kamiya, J. Non-Cryst. Solids, 42(1980)403.CrossRefGoogle Scholar
  27. 27.
    G.W. Scherer, Yogyo Kyoukaishi, 95(1987)21.Google Scholar
  28. 28.
    J.D. Mackenzie and D.R. Ulrich (Eds.), Ultrastructure Processing of Advanced Ceramics, Wiley, New York, 1988.Google Scholar
  29. 29.
    S. Sakka, Zoru-geru-hou no Kagaku (Science of the Sol-Gel Method), Agune-Shoufuusha, Tokyo, 1988.Google Scholar
  30. 30.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science — The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.Google Scholar
  31. 31.
    L.L. Hench and J.K. West, Chem. Rev., 90(1990)33.CrossRefGoogle Scholar
  32. 32.
    M. Anpo, H. Nishiguchi, and T. Fujii, Res. Chem. Intermed., 13(1990)73.CrossRefGoogle Scholar
  33. 33.
    R. Reisfeld, R. Zusman, Y. Cohen, and M. Eyal, Chem. Phys. Lett., 147(1988)142.CrossRefGoogle Scholar
  34. 34.
    R. Gvishi and R. Reisfeld, J. Non-Cryst. Solids, 128(1991)69.CrossRefGoogle Scholar
  35. 35.
    V. Chernyak and R. Reisfeld, Chem. Phys. Lett., 181(1991)39.CrossRefGoogle Scholar
  36. 36.
    V.R. Kaufman, D. Levy, and D. Avnir, J. Non-Cryst. Solids, 82(1986)103; D. Levy and D. Avnir, J. Phys. Chem., 92(1988)4734; D. Levy, S. Einhorn, and D. Avnir, J. Non-Cryst Solids, 113(1989)137.CrossRefGoogle Scholar
  37. 37.
    K. Matsui, T. Morohosi, and S. Yoshida, Proc. Int. Meeting Adv. Materials, Tokyo, 1988.Google Scholar
  38. 38.
    K. Matsui, T. Matsuzuka, and H. Fujita, J. Phys. Chem., 93(1989)4991; K. Matsui and T. Nakazawa, Bull. Chem. Soc. Jpn., 63(1990)11; K. Matsui and N. Usuki, ibid., 63(1990)3516.CrossRefGoogle Scholar
  39. 39.
    K. Matsui, T. Nakazawa, and H. Morisaki, J. Phys. Chem., 95(1991)976; K. Matsui, accepted in Langmuir.CrossRefGoogle Scholar
  40. 40.
    J. McKiernan, J.C. Pouxviel, B. Dunn, and J.I. Zink, J. Phys. Chem., 93(1989)2129; J.C. Pouxviel, B. Dunn, and J.I. Zink, ibid., 93(1989)2134; D. Preston, J.C. Pouxviel, T Novinson, W.C. Kaska, B. Dunn, and J.I. Zink, J. Phys. Chem., 94(1990)4167.CrossRefGoogle Scholar
  41. 41.
    P. Chou, D. McMorrow, T.J. Aartsma, and M. Kasha, J. Phys. Chem., 88(1984)4596; P. Chou and T.J. Aartsma, ibid., 90(1986)721.CrossRefGoogle Scholar
  42. 42.
    M. Kasha, in EL. Carter, R.E. Siatkowski, and H. Wohltjen (Eds.), Molecular Electronic Devices, Elsevier, Amsterdam, 1988, p. 107.Google Scholar
  43. 43.
    T. Saito, A. Nomura, and T. Kano, Appl. Phys. Lett., 53(1988)1903; S. Saito, M. Kato, A. Nomura, and T Kano, ibid., 56(1990)811.CrossRefGoogle Scholar
  44. 44.
    Kgaku Binnran, II-356, The Chemical Society of Japan, Maruzen, Tokyo, 1984.Google Scholar
  45. 45.
    J.B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, New York, 1970.Google Scholar
  46. 46.
    R.K. Iler, The Chemistry of Silica, John Wiley & Sons, New York, 1979.Google Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • T. Fujii
    • 1
  • Y. Murata
    • 1
  • M. Matsui
    • 2
  1. 1.Department of Chemistry and Material Engineering, Faculty of EngineeringShinshu UniversityWakasato, NaganoJapan
  2. 2.Fundamental Research Department, Central Research LaboratoryMitsubishi Cable Ind., Ltd.Amagasaki, HyogoJapan

Personalised recommendations