Research on Chemical Intermediates

, Volume 17, Issue 1, pp 27–38 | Cite as

Fundamental mechanisms of surface photochemistry



The fundamental mechanisms of photochemistry of molecules adsorbed on solid surfaces are revealed from results obtained by a combination of optical techniques, surface probes, and gas phase analysis. While photon-induced processes similar to those in the gas and liquid phase are observed for the adsorbed molecules, the presence of the substrate introduces important channels for energy exchange, dissipation, and adsorbate photochemistry.


Photodissociation Adsorbed Molecule Electron Energy Loss Spectroscopy Wavelength Dependence Thermal Desorption Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.J. Chuang, Surf. Sci. Rep., 3(1983)1.CrossRefGoogle Scholar
  2. 2.
    W. Ho, Comments Cond. Mat. Phys., 13(1988)293; Photochemistry in Thin Films, Proc. Soc. Photo-Opt. Instrum. Eng., 1056(1989)157; G. Betz and P. Varga (Eds.), Desorption Induced by Electronic Transition, DIET IV, Springer Series in Surfaces Sciences, Springer-Verlag Berlin, Heidelberg, 1990, Vol. 19, p. 48.Google Scholar
  3. 3.
    P. Avouris and R.E. Walkup, Annu. Rev. Phys. Chem., 40(1989)173.CrossRefGoogle Scholar
  4. 4.
    J.M. White in R. Vanselow and R. Howe (Eds.), Chemistry and Physics of Solid Surfaces VII, Springer-Verlag Berlin, Heidelberg, 1990, p. 29; Z.-L. Zhou, X.-Y. Zhu, and J.M. White, Surf. Sci. Rep., 13(1991)73.Google Scholar
  5. 5.
    J.C. Polanyi and H. Rieley in C.T. Rettner and M.N.R. Ashford (Eds.), Dynamics of Gas-Surface Interactions, Royal Soc. of Chem., London, 1991, p. R329.Google Scholar
  6. 6.
    E.B.D. Bourdon, P. Das, I. Harrison, J.C. Polanyi, J. Segner, CD. Stanners, R.J. Williams, and PA. Young, Faraday Discuss, Chem. Soc., 82(1986)343.CrossRefGoogle Scholar
  7. 7.
    D.S. King and R.R. Cavanagh in R.B. Hall and A.B. Ellis (Eds.), Chemistry and Structure at Interfaces, New Laser and Optical Techniques, VCH, Deerfield Beach, 1986, p. 25; Adv. Chem. Phys., 76(1989)45.Google Scholar
  8. 8.
    M.C. Lin and G. Ertl, Ann. Rev. Phys. Chem., 37(1986)587.CrossRefGoogle Scholar
  9. 9.
    H. Zacharias, Int. J. Mod. Phys., B4(1990)45.Google Scholar
  10. 10.
    E.P. Marsh, T.L. Gilton, W. Meier, M.R. Schneider, and J.P. Cowin, Phys. Rev. Lett., 61(1988)2725.CrossRefGoogle Scholar
  11. 11.
    E. Hasselbrink, S. Jakubith, S. Nettesheim, M. Wolf, A. Cassuton, and G. Ertl, J. Chem. Phys., 92(1990)3154.CrossRefGoogle Scholar
  12. 12.
    J.A. Prybyla, T.E Heinz, J.A. Misewich, M.M.T. Loy, and J.H. Glownia, Phys. Rev. Lett, 64(1990)1537.CrossRefGoogle Scholar
  13. 13.
    T.J. Chuang and I. Hussla, Phys. Rev. Lett., 52(1984)2045; I. Hussla, H. Seki, T.J. Chuang, Z.W. Gortel, H.J. Kreuzer, and P. Piercy, Phys. Rev. B, 32(1985)3489.CrossRefGoogle Scholar
  14. 14.
    N.J. Tro, D.A. Arthur, and S.M. George, J. Chem. Phys., 90(1989)3389.CrossRefGoogle Scholar
  15. 15.
    D. Burgess, Jr., R. Viswanathan, I. Hussla, PC. Stair, and E. Weitz, J. Chem. Phys., 79(1983)5200.CrossRefGoogle Scholar
  16. 16.
    R.B. Hall, J. Phys. Chem., 91(1987)1007.CrossRefGoogle Scholar
  17. 17.
    C.H. Mak, J.L. Brand, B.G. Koehler, and S.N. George, Surf. Sci., 191(1987)108.CrossRefGoogle Scholar
  18. 18.
    Z.C. Ying and W. Ho, Surf. Sci., 198(1988)473.CrossRefGoogle Scholar
  19. 19.
    C.E. Bartosch, N.S. Gluck, W. Ho, and Z.C. Ying, Phys. Rev. Lett., 57(1986)1425.CrossRefGoogle Scholar
  20. 20.
    J.R. Swanson, CM. Friend, and YJ. Chabal, J. Chem. Phys., 87(1987)5028.CrossRefGoogle Scholar
  21. 21.
    K. Domen and T.J. Chuang, Phys. Rev. Lett., 59(1987)1484.CrossRefGoogle Scholar
  22. 22.
    S.A. Costello, B. Roop, Z.-M. Liu, and J.M. White, J. Phys. Chem., 92(1988)1019.CrossRefGoogle Scholar
  23. 23.
    Z.C. Ying and W. Ho, Phys. Rev. Lett., 60(1987)57.CrossRefGoogle Scholar
  24. 24.
    S.A. Buntin, L.J. Richter, R.R. Cavanagh, and D.S. King, Phys. Rev. Lett., 61(1988)1321.CrossRefGoogle Scholar
  25. 25.
    EG. Celii, P.M. Whitmore, and K.C. Janda, Chem. Phys. Lett., 138(1987)257; J. Phys. Chem., 92(1988)1604.CrossRefGoogle Scholar
  26. 26.
    T.A. Germer and W. Ho, J. Chem. Phys., 89(1988)562; J. Vac. Sci. Technol. A, 7(1989)1878.CrossRefGoogle Scholar
  27. 27.
    J.R. Creighton, J. Appl. Phys., 59(1986)410.CrossRefGoogle Scholar
  28. 28.
    N.S. Gluck, Z.C. Ying, C.E. Bartosch, and W. Ho, J. Chem. Phys., 86(1986)4957.CrossRefGoogle Scholar
  29. 29.
    J.R. Swanson, F.A. Flitsch, and CM. Friend, Surf. Sci., 226(1990)147.CrossRefGoogle Scholar
  30. 30.
    Z.C. Ying and W. Ho, Phys. Rev. Lett., 65(1990)741; J. Chem. Phys., 94(1991)5701.CrossRefGoogle Scholar
  31. 31.
    N.S. Gluck, G.J. Wolga, C.E. Bartosch, W. Ho, and Z.C. Ying, J. Appl. Phys., 61(1987)998.CrossRefGoogle Scholar
  32. 32.
    K.A. Singmaster, F.A. Houle, and R.J. Wilson, J. Phys. Chem., 94(1990)6864.CrossRefGoogle Scholar
  33. 33.
    H.B. Gray and N.A. Beach, J. Am. Chem. Soc., 85(1963)2922; N.A. Beach and H.B. Gray, ibid., 90(1968)5713.CrossRefGoogle Scholar
  34. 34.
    D.S. Alderice, J. Mol. Spectrosc, 15(1965)509.CrossRefGoogle Scholar
  35. 35.
    S.K. So and W. Ho, J. Chem. Phys., 95(1991)656.CrossRefGoogle Scholar
  36. 36.
    D.V. Chakarov, Z.C. Ying, and W. Ho, Surf. Sci., 255(1991)L550.CrossRefGoogle Scholar
  37. 37.
    R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, and G.L. Eesley, Phys. Rev. Lett., 58(1987)1680.CrossRefGoogle Scholar
  38. 38.
    F. Budde, T.F. Heinz, M.M.T. Loy, J.A. Misewich, F. de Rougemon, and H. Zacharias, Phys. Rev. Lett., 66(1991)3024.CrossRefGoogle Scholar
  39. 39.
    J.A. Prybyla, H.W.K. Tom, and G.D. Aumlleer, in Proceedings on Electrochemical Society Meeting, 1991.Google Scholar
  40. 40.
    F.-J. Kao, D.G. Busch, and W. Ho, to be published (1992).Google Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • W. Ho
    • 1
    • 2
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA
  2. 2.Materials Science CenterCornell UniversityIthacaUSA

Personalised recommendations