Research on Chemical Intermediates

, Volume 34, Issue 5–7, pp 525–533 | Cite as

Direct photo-oxidation of benzene to phenol over Ti/Si binary oxide prepared by sol-gel method

  • Yuichi Ichihashi
  • Masa-Aki Taniguchi
  • Satoru Nishiyama
  • Shigeru Tsuruya


Titanium-silicon (Ti/Si) binary oxides having a varying Ti content were prepared using the sol-gel method and used as photocatalysts. The photo-oxidation of benzene to phenol was carried out using Ti/Si binary oxide catalysts in the presence of benzene, water and gaseous oxygen. The amounts of benzene used hardly affected the phenol yield. On the other hand, the addition of sulfuric acid into reaction solution led to the improvement of phenol formation. The H2O2 formation rate seemed to be related to the phenol yeilds. The photocatalytic reactivity of Ti/Si binary oxide having different TiO2 contents was investigated and it was found to be dramatically enhanced in the range of lower TiO2 contents. XANES, ESR and XRD spectroscopic investigations of these Ti/Si binary oxide catalysts indicated that Ti species were highly dispersed in SiO2 matrices and existed in a tetrahedral coordination. The photo-irradiation of catalysts having tetrahedral Ti species seemed to effectively lead to the formation of H2O2 as an intermediate.


Ti/Si binary oxide photocatalyst sol-gel method phenol synthesis partial oxidation benzene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment. Elsevier, Amsterdam (1993).Google Scholar
  2. 2.
    N. Serpone and E. Pelizzetti, Photocatalysis: Fundamentals and Applications. Wiley, New York, NY (1989).Google Scholar
  3. 3.
    H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M. A. Fox and M. Anpo, J. Catal. 158, 97 (1996).CrossRefGoogle Scholar
  4. 4.
    Y. Ichihashi, H. Yamashita and M. Anpo, Stud. Surface Sci. Catal. 105, 1609 (1997).CrossRefGoogle Scholar
  5. 5.
    Y. Ichihashi, H. Yamashita and M. Anpo, J. Phys. IV France 7, 883 (1997).CrossRefGoogle Scholar
  6. 6.
    H. Yamashita, M. Harada, A. Tanii, M. Honda, M. Takeuchi, Y. Ichihashi, M. Anpo, N. Iwamoto, N. Itoh and T. Hirao, Catal. Today 63, 63 (2000).CrossRefGoogle Scholar
  7. 7.
    H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis and M. Che, J. Phys. Chem. B 102, 5870 (1998).CrossRefGoogle Scholar
  8. 8.
    W. T. Dixon and R. O. C. Norman, J. Chem. Soc., 4857 (1976).Google Scholar
  9. 9.
    K. Nomiya, H. Yamagibayashi, C. Nozaki, K. Kondoh, E. Hiramatsu and Y. Shimizu, J. Mol. Catal. A 114, 181 (1996).CrossRefGoogle Scholar
  10. 10.
    L. C. Passoni, A. T. Cruz, R. Buffon and U. Schuchardt, J. Mol. Catal. A 120, 117 (1997).CrossRefGoogle Scholar
  11. 11.
    Y. Masumoto, R. Hamada, K. Yokota, S. Nishiyama and S. Tsuruya, J. Mol. Catal. A 184, 215 (2002).CrossRefGoogle Scholar
  12. 12.
    M. Ishida, Y. Masumoto, R. Hamada, S. Nishiyama, S. Tsuruya and M. Masai, J. Chem. Soc. Perkin Trans. 2 847 (1999).Google Scholar
  13. 13.
    T. Ohtani, S. Nishiyama, S. Tsuruya and M. Masai, J. Catal. 155, 158 (1995).CrossRefGoogle Scholar
  14. 14.
    J. Okamura, S. Nishiyama, S. Tsuruya and M. Masai, J. Mol. Catal. A 135, 133 (1998).CrossRefGoogle Scholar
  15. 15.
    S. Yamaguchi, S. Sumimoto, Y. Ichihashi, S. Nishiyama and S. Tsuruya, Ind. Eng. Chem. Res. 44, 1 (2005).CrossRefGoogle Scholar
  16. 16.
    M. Fujihira, Y. Satoh and T. Osa, Nature 293, 206 (1981).CrossRefGoogle Scholar
  17. 17.
    C. A. Turchi and D. F. Ollis, J. Catal. 119, 483 (1989).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Yuichi Ichihashi
    • 1
  • Masa-Aki Taniguchi
    • 1
  • Satoru Nishiyama
    • 2
  • Shigeru Tsuruya
    • 1
  1. 1.Department of Chemical Science and Engineering, Faculty of EngineeringKobe UniversityKobeJapan
  2. 2.Environment Management CenterKobe UniversityKobeJapan

Personalised recommendations