Skip to main content
Log in

Analysis of preparation of TiO2 particles by diffusion flame reactor for photodegradation of phenol and toluene

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles were produced in the diffusion flame reactor, and the size and anatase/rutile content of TiO2 were examined by a Particle Size Analyzer and X-ray diffraction, respectively. Increase in fuel/O2 ratio, initial concentration of TiCl4 or total gas flow rate causes the larger particle size and the higher rutile composition. The photocatalytic activities of TiO2 powders were tested on the decompositions of phenol and toluene in the aqueous solution under UV irradiation. The degradation rate increases as the TiO2 particle size decreases and as the initial concentration of phenol or toluene increases. The photodegradation rate of phenol by TiO2 particles is higher than that of toluene at the same process conditions. The computational method was used to simulate the gas temperature, velocity and species mass fractions inside the diffusion flame reactor during synthesis of TiO2 nanoparticles. The measured and simulated temperature results were compared on several positions above the burner and both of them show good agreements. The typical contours of TiCl4, TiO2 mass fractions and gas velocities in flame reactor were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Marci, M. Addamo, V. Augugliaro, S. Coluccia, E. Garcia-Lopez, V. Loddo, G. Martra, L. Palmisano and M. Schiavello, J. Photochem. Photobiol. A: Chem. 160, 105 (2003).

    Article  CAS  Google Scholar 

  2. C. J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J. O. Carneiro and A. J. Fernandes, Mater. Sci. Eng. B 138, 139 (2007).

    Article  CAS  Google Scholar 

  3. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renew. Sustain. Energ. Rev. 11, 401 (2007).

    Article  CAS  Google Scholar 

  4. W. J. Stark and S. E. Pratsinis, Powder Technol, 126, 103 (2002).

    Article  CAS  Google Scholar 

  5. K. K. Akurati, A. Vital, G. Fortunato, R. Hany, F. Nueesch and T. Graule, Solid State Sci. 9, 247 (2007).

    Article  CAS  Google Scholar 

  6. S. E. Pratsinis, W. Zhu and S. Vemury, Powder Technol, 86, 87 (1996).

    Article  CAS  Google Scholar 

  7. B. Zhao, K. Uchikawa, J. R. McCormick, C. Y. Ni, J. G. Chen and H. Wang, Proc. Combust. Inst. 30, 2569 (2005).

    Article  Google Scholar 

  8. T. Johannessen, S. E. Pratsinis and H. Livbjerg, Chem. Eng. Sci. 55, 177 (2000).

    Article  CAS  Google Scholar 

  9. T. Johannessen, S. E. Pratsinis and H. Livbjerg, Powder Technol, 118, 242 (2001).

    Article  CAS  Google Scholar 

  10. M. Ilbas, I. Yilmaz and Y. Kaplan, Int. J. Hydrogen Energ. 30, 1139 (2005).

    Article  CAS  Google Scholar 

  11. A. Zucca, D. L. Marchisio, A. A. Barresi and R. O. Fox, Chem. Eng. Sci. 61, 87 (2006).

    Article  CAS  Google Scholar 

  12. Fluent User’s Guide, 1–4, Release 6.0. Fluent, Lebanon, NH (2001).

  13. B. F. Magnussen and B. H. Hjertager, in: Proceedings of the 16th Symposium (Internatioal) on Combustion, Pittsburgh, PA, p. 719 (1976).

  14. S. E. Pratsinis, H. Bai and P. Biswas, J. Am. Chem. Soc. 73, 2158 (1990).

    CAS  Google Scholar 

  15. B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974).

    Article  Google Scholar 

  16. K. K. Agurati, A. Vital, U. E. Klotz, B. Bommer, T. Graule and T. Graule and M. Winterer, Powder Technol. 165, 71 (2006).

    Google Scholar 

  17. D. R. Stall, JANAF Thermochemical Tables. Joint Army-Navy-Air Force-ARPANASA Thermochemical Working Group (1996).

  18. M. C. Blount, D. H. Kim and J. L. Falconer, J. Photochem. Photobiol. A: Chem. 118, 197 (1998).

    Article  Google Scholar 

  19. N. Negishi, F. He, S. Matsuzawa, K. Takeuchi and K. Ohno, C. R. Chimie 9, 822 (2006).

    CAS  Google Scholar 

  20. N. Bowering, G. S. Walker and P. G. Harrison, Appl. Catal. B: Environ. 62, 208 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyo-Seon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunsap, P., Kim, DJ., Charinpanitkul, T. et al. Analysis of preparation of TiO2 particles by diffusion flame reactor for photodegradation of phenol and toluene. Res. Chem. Intermed. 34, 319–329 (2008). https://doi.org/10.1163/156856708784040632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856708784040632

Keywords

Navigation