Research on Chemical Intermediates

, Volume 34, Issue 4, pp 319–329 | Cite as

Analysis of preparation of TiO2 particles by diffusion flame reactor for photodegradation of phenol and toluene

  • Piyabutr Sunsap
  • Dong-Joo Kim
  • Tawatchai Charinpanitkul
  • Kyo-Seon Kim


TiO2 nanoparticles were produced in the diffusion flame reactor, and the size and anatase/rutile content of TiO2 were examined by a Particle Size Analyzer and X-ray diffraction, respectively. Increase in fuel/O2 ratio, initial concentration of TiCl4 or total gas flow rate causes the larger particle size and the higher rutile composition. The photocatalytic activities of TiO2 powders were tested on the decompositions of phenol and toluene in the aqueous solution under UV irradiation. The degradation rate increases as the TiO2 particle size decreases and as the initial concentration of phenol or toluene increases. The photodegradation rate of phenol by TiO2 particles is higher than that of toluene at the same process conditions. The computational method was used to simulate the gas temperature, velocity and species mass fractions inside the diffusion flame reactor during synthesis of TiO2 nanoparticles. The measured and simulated temperature results were compared on several positions above the burner and both of them show good agreements. The typical contours of TiCl4, TiO2 mass fractions and gas velocities in flame reactor were presented.


TiO2 photocatalysts diffusion flame reactor photodegradation phenol toluene computational analysis of flame reactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Marci, M. Addamo, V. Augugliaro, S. Coluccia, E. Garcia-Lopez, V. Loddo, G. Martra, L. Palmisano and M. Schiavello, J. Photochem. Photobiol. A: Chem. 160, 105 (2003).CrossRefGoogle Scholar
  2. 2.
    C. J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J. O. Carneiro and A. J. Fernandes, Mater. Sci. Eng. B 138, 139 (2007).CrossRefGoogle Scholar
  3. 3.
    M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renew. Sustain. Energ. Rev. 11, 401 (2007).CrossRefGoogle Scholar
  4. 4.
    W. J. Stark and S. E. Pratsinis, Powder Technol, 126, 103 (2002).CrossRefGoogle Scholar
  5. 5.
    K. K. Akurati, A. Vital, G. Fortunato, R. Hany, F. Nueesch and T. Graule, Solid State Sci. 9, 247 (2007).CrossRefGoogle Scholar
  6. 6.
    S. E. Pratsinis, W. Zhu and S. Vemury, Powder Technol, 86, 87 (1996).CrossRefGoogle Scholar
  7. 7.
    B. Zhao, K. Uchikawa, J. R. McCormick, C. Y. Ni, J. G. Chen and H. Wang, Proc. Combust. Inst. 30, 2569 (2005).CrossRefGoogle Scholar
  8. 8.
    T. Johannessen, S. E. Pratsinis and H. Livbjerg, Chem. Eng. Sci. 55, 177 (2000).CrossRefGoogle Scholar
  9. 9.
    T. Johannessen, S. E. Pratsinis and H. Livbjerg, Powder Technol, 118, 242 (2001).CrossRefGoogle Scholar
  10. 10.
    M. Ilbas, I. Yilmaz and Y. Kaplan, Int. J. Hydrogen Energ. 30, 1139 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Zucca, D. L. Marchisio, A. A. Barresi and R. O. Fox, Chem. Eng. Sci. 61, 87 (2006).CrossRefGoogle Scholar
  12. 12.
    Fluent User’s Guide, 1–4, Release 6.0. Fluent, Lebanon, NH (2001).Google Scholar
  13. 13.
    B. F. Magnussen and B. H. Hjertager, in: Proceedings of the 16th Symposium (Internatioal) on Combustion, Pittsburgh, PA, p. 719 (1976).Google Scholar
  14. 14.
    S. E. Pratsinis, H. Bai and P. Biswas, J. Am. Chem. Soc. 73, 2158 (1990).Google Scholar
  15. 15.
    B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974).CrossRefGoogle Scholar
  16. 16.
    K. K. Agurati, A. Vital, U. E. Klotz, B. Bommer, T. Graule and T. Graule and M. Winterer, Powder Technol. 165, 71 (2006).Google Scholar
  17. 17.
    D. R. Stall, JANAF Thermochemical Tables. Joint Army-Navy-Air Force-ARPANASA Thermochemical Working Group (1996).Google Scholar
  18. 18.
    M. C. Blount, D. H. Kim and J. L. Falconer, J. Photochem. Photobiol. A: Chem. 118, 197 (1998).CrossRefGoogle Scholar
  19. 19.
    N. Negishi, F. He, S. Matsuzawa, K. Takeuchi and K. Ohno, C. R. Chimie 9, 822 (2006).Google Scholar
  20. 20.
    N. Bowering, G. S. Walker and P. G. Harrison, Appl. Catal. B: Environ. 62, 208 (2006).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Piyabutr Sunsap
    • 1
  • Dong-Joo Kim
    • 1
  • Tawatchai Charinpanitkul
    • 2
  • Kyo-Seon Kim
    • 1
  1. 1.Department of Chemical EngineeringKangwon National UniversityKangwon-doSouth Korea
  2. 2.Center of Excellence in Particle Technology, Faculty of EngineeringChulalongkorn UniversityBangkokThailand

Personalised recommendations