Advertisement

Research on Chemical Intermediates

, Volume 34, Issue 2–3, pp 287–298 | Cite as

New strategy for band-gap tuning in semiconductor nanocrystals

Article

Abstract

In the last decade, the main efforts have focused on the preparation of different sized binary II–VI group semiconductor nanocrystals to obtain different color-emitting luminescence. However, the tuning of physical and chemical properties by changing the particle size could cause problems in many applications, in particular if unstable small particles are used. Recent advances have led to the exploration of tunable optical properties by changing their constituent stoichiometries in ternary alloy nanocrystals. High-quality Zn x Cd1−x Se alloy nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals or embryonic CdSe nuclei. With increasing Zn content, a composition-tunable emission across the whole visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. High-quality alloy Zn x Cd1−x S nanocrystals have been obtained by the conucleation and co-growth of the constituents through the reaction of a mixture of CdO- and ZnO-oleic acid complexes with sulfur at elevated temperatures. The obtained Zn x Cd1−x S alloy nanocrystals possess superior optical properties with photoluminescence quantum yields of 25–50%, especially the extremely narrow emission spectral width (fwhm=14 nm).

Keywords

Alloy nanocrystals band-gap tuning luminescence semiconductor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature 370, 354 (1994).CrossRefGoogle Scholar
  2. 2.
    M. C. Schlamp, X. Peng and A. P. Alivisatos, J. Appl. Phys. 82, 5837 (1997).CrossRefGoogle Scholar
  3. 3.
    M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach and H. Weller, J. Appl. Phys. 87, 2297 (2000).CrossRefGoogle Scholar
  4. 4.
    N. Tessler, V. Medvedev, M. Kazes, S. H. Kan and U. Banin, Science 295, 1506 (2002).CrossRefGoogle Scholar
  5. 5.
    V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and M. G. Bawendi, Science 290, 314 (2000).CrossRefGoogle Scholar
  6. 6.
    M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski and W. Langbein, Nano Lett. 1, 309 (2001).CrossRefGoogle Scholar
  7. 7.
    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan and A. M. Wu, Science 307, 538 (2005).CrossRefGoogle Scholar
  8. 8.
    M. P. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science 281, 2013 (1998).CrossRefGoogle Scholar
  9. 9.
    W. C. W. Chan and S. Nie, Science 281, 2016 (1998).CrossRefGoogle Scholar
  10. 10.
    X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez, Biotechnol. 21, 41 (2003).CrossRefGoogle Scholar
  11. 11.
    W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han and S. Nie, Curr. Opin. Biotechnol. 13, 40 (2002).CrossRefGoogle Scholar
  12. 12.
    X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez, Nature Biotechnol. 21, 41 (2003).CrossRefGoogle Scholar
  13. 13.
    C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
  14. 14.
    X. Peng, Chem. Eur. J. 8, 334 (2002).CrossRefGoogle Scholar
  15. 15.
    Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 183 (2001).CrossRefGoogle Scholar
  16. 16.
    L. Qu, Z. A. Peng and X. Peng, Nano Lett. 1, 333 (2001).CrossRefGoogle Scholar
  17. 17.
    L. Qu and X. Peng, J. Am. Chem. Soc. 124, 2049 (2002).CrossRefGoogle Scholar
  18. 18.
    D. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett. 1, 207 (2001).CrossRefGoogle Scholar
  19. 19.
    P. Reiss, J. Bleuse and A. Pron, Nano Lett. 2, 781 (2002).CrossRefGoogle Scholar
  20. 20.
    M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
  21. 21.
    X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).CrossRefGoogle Scholar
  22. 22.
    B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
  23. 23.
    X. Zhong, R. Xie, Y. Zhang, T. Basche and W. Knoll, Chem. Mater. 17, 4038 (2005).CrossRefGoogle Scholar
  24. 24.
    A.-B. Chen and A. Sher, Semiconductor Alloys, Plenum Press, New York, NY (1996).Google Scholar
  25. 25.
    B. A. Korgel and H. G. Monbouquette, Langmuir 16, 3588 (2000).CrossRefGoogle Scholar
  26. 26.
    D. V. Petrov, B. S. Santos, G. A. L. Pereira and C. D. M. Donegá, J. Phys. Chem. B 106, 5325 (2002).CrossRefGoogle Scholar
  27. 27.
    M. T. Harrison, S. V. Kershaw, M. G. Burt, A. Eychmüller, H. Weller and A. L. Rogach, Mater. Sci. Eng. B 69, 355 (2000).CrossRefGoogle Scholar
  28. 28.
    Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi and J. H. Fendler, J. Phys. Chem. 100, 8927 (1996).CrossRefGoogle Scholar
  29. 29.
    W. Wang, I. Germanenko and M. S. El-Shall, Chem. Mater. 14, 3028 (2002).CrossRefGoogle Scholar
  30. 30.
    X. Zhong, M. Han, Z. Dong, T. White and W. Knoll, J. Am. Chem. Soc. 125, 8589 (2003).CrossRefGoogle Scholar
  31. 31.
    X. Zhong, Z. H. Zhang, S. H. Liu, M. Y. Han and W. Knoll, J. Phys. Chem. B 108, 15552 (2004).CrossRefGoogle Scholar
  32. 32.
    X. Zhong, Y. Feng, W. Knoll and M. Han, J. Am. Chem. Soc. 125, 13559 (2003).CrossRefGoogle Scholar
  33. 33.
    X. Zhong, S. Liu, Z. Zhang, L. Li, Z. Wen and W. Knoll, J. Mater. Chem. 14, 2790 (2004).CrossRefGoogle Scholar
  34. 34.
    R. E. Bailey and S. Nie, J. Am. Chem. Soc. 125, 7100 (2003).CrossRefGoogle Scholar
  35. 35.
    L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman and S. J. Rosenthal, J. Am. Chem. Soc. 128, 12299 (2006).CrossRefGoogle Scholar
  36. 36.
    J. P. Ge, S. Xu, J. Zhuang, X. Wang, Q. Peng and Y. D. Li, Inorg. Chem. 45, 4922 (2006).CrossRefGoogle Scholar
  37. 37.
    Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li and Y. F. Li, Adv. Func. Mater. 15, 433 (2005).CrossRefGoogle Scholar
  38. 38.
    X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc. 120, 5343 (1998).CrossRefGoogle Scholar
  39. 39.
    Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 1389 (2001).CrossRefGoogle Scholar
  40. 40.
    X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature 404, 59 (2000).CrossRefGoogle Scholar
  41. 41.
    D. V. Talapin, A. L. Rogach, M. Haase and H. Weller, J. Phys. Chem. B 105, 12278 (2001).CrossRefGoogle Scholar
  42. 42.
    M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. B 102, 3655 (1998).CrossRefGoogle Scholar
  43. 43.
    S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000).CrossRefGoogle Scholar
  44. 44.
    S. Sun, C. B. Muray, D. Weller, L. Folks and A. Moser, Science 287, 1989 (2000).CrossRefGoogle Scholar
  45. 45.
    E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, J. Am. Chem. Soc. 124, 11480 (2002).CrossRefGoogle Scholar
  46. 46.
    D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, J. Phys. Chem. B 105, 2260 (2001).CrossRefGoogle Scholar
  47. 47.
    X. Q. Li and Y. Arakawa, Phys. Rev. B 60, 1915 (1999).CrossRefGoogle Scholar
  48. 48.
    W. G. J. H. M. van Sark, P. L. T. M. Fredrix, D. J. Van den Heuvel, M. A. H. Asselberg and H. C. Gerritsen, Single Mol. 1, 291 (2000).CrossRefGoogle Scholar
  49. 49.
    X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos and S. Weiss. Single Mol. 4, 261 (2001).CrossRefGoogle Scholar
  50. 50.
    W. G. J. H. M. van Sark, P. L. T. M. Fredrix, D. J. Van den Heuvel and H. C. Gerritsen, J. Phys. Chem. B 105, 8281 (2001).CrossRefGoogle Scholar
  51. 51.
    S. V. Gaponenko, in: Optical Properties of Semiconductor Nanocrystals, p. 38, Cambridgie University Press, Cambridge (1998).Google Scholar
  52. 52.
    M. V. R. Krishna and R. A. Friesner, J. Chem. Phys. 95, 8309 (1991).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.School of Life Science and TechnologyTongji UniversityShanghaiP.R. China
  2. 2.Department of ChemistryEast China University of Science and TechnologyShanghaiP.R. China

Personalised recommendations