Advertisement

Research on Chemical Intermediates

, Volume 33, Issue 6, pp 541–548 | Cite as

New environmentally-friendly solvent-free synthesis of imines using calcium oxide under microwave irradiation

  • M. Gopalakrishnan
  • P. Sureshkumar
  • V. Kanagarajan
  • J. Thanusu
Article

Abstract

Condensation of structurally diverse aldehydes including heterocyclic aldehydes, like furfural, with various amines in the presence of calcium oxide affording the corresponding imines in solvent-free conditions in good to excellent yields under microwave irradiation is described. A comparative study has been done under thermal conditions. The synergy between dry media and microwave irradiation in this reaction is evaluated by condensing less electrophilic aldehydes with poorly nucleophilic amines. The main advantages of this environmentally friendly protocol are the use of the non-toxic and inexpensive reagent calcium oxide and the considerable rate enhancement in comparison with a thermal reaction.

Keywords

Calcium oxide imines solvent-free conditions microwave irradiation green chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Layer, Chem. Rev. 63, 489 (1963).CrossRefGoogle Scholar
  2. 2.
    S. Patai, The Chemistry of the Carbon-Nitrogen Double Bond. Wiley-Interscience, New York, NY (1970).Google Scholar
  3. 3.
    D. J. Hadjipavlou-litina and A. A. Geronikaki, Drug Design Discov. 15, 199 (1996).Google Scholar
  4. 4.
    P. Vicini, A. Geronikaki, M. Incerti, B. Busonera, G. Poni, C. A. Cabras and P. L. Colla, Bioorg. Med. Chem. 11, 4785 (2003).CrossRefGoogle Scholar
  5. 5.
    D. E. Bergbreiter and M. Newcombe, in: Asymmetric Synthesis, Vol. 2A, J. D. Morrison (Ed.), p. 243. Academic Press, Orlando, FL (1983).Google Scholar
  6. 6.
    K. A. Schellenberg, J. Org. Chem. 28, 3259 (1963).CrossRefGoogle Scholar
  7. 7.
    V. V. Kuznetsov, A. R. Pal’ma, A. E. Aliev, A. V. Varlamov and N. S. Prostakov, Zh. Org. Khim. 127, 1579 (1991).Google Scholar
  8. 8.
    O. Tsuge and R. Kanemasa, Adv. Heterocycl. Chem. 45, 231 (1989).CrossRefGoogle Scholar
  9. 9.
    M. F. Aly, M. I. Younes and S. A. O. Matwally, Tetrahedron 50, 3159 (1994).CrossRefGoogle Scholar
  10. 10.
    J. H. Billman and K. M. Tai, J. Org. Chem. 23, 535 (1958).CrossRefGoogle Scholar
  11. 11.
    W. A. White and H. Weingarten, J. Org. Chem. 32, 213 (1967).CrossRefGoogle Scholar
  12. 12.
    G. Liu, D. A. Cogan, T. D. Owens, T. P. Tang and J. A. Ellman, J. Org. Chem. 64, 1278 (1999).CrossRefGoogle Scholar
  13. 13.
    Z. Andrade and Z. Suarez, Synlett. 12, 2135 (2004).CrossRefGoogle Scholar
  14. 14.
    R. S. Vaas, J. Dudas and R. S. Varma, Tetrahedron Lett. 40, 4951 (1999).CrossRefGoogle Scholar
  15. 15.
    R. S. Varma, R. Dahiya and S. Kumar, Tetrahedron Lett. 38, 2039 (1997).CrossRefGoogle Scholar
  16. 16.
    M. Gopalakrishnan, P. Sureshkumar, V. Kanagarajan, J. Thanusu and R. Govindaraju, J. Chem. Res. 5, 299 (2005).CrossRefGoogle Scholar
  17. 17.
    M. Gopalakrishnan, P. Sureshkumar, V. Kanagarajan and J. Thanusu, Lett. Org. Chem. 2, 444 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Gopalakrishnan, P. Sureshkumar, V. Kanagarajan and J. Thanusu, Catal. Commun. 6, 753 (2005).CrossRefGoogle Scholar
  19. 19.
    R. N. Gedye, F. E. Smith and K. C. Westaway, Can. J. Chem. 66, 17 (1998).CrossRefGoogle Scholar
  20. 20.
    A. Loupy, L. Perreux, M. Liagre, K. Burle and M. Moneuse, Pure Appl. Chem. 73, 161 (2001).CrossRefGoogle Scholar
  21. 21.
    L. Perreux and A. Loupy, Tetrahedron 57, 9199 (2001).CrossRefGoogle Scholar

Copyright information

© VSP 2007

Authors and Affiliations

  • M. Gopalakrishnan
    • 1
  • P. Sureshkumar
    • 1
  • V. Kanagarajan
    • 1
  • J. Thanusu
    • 1
  1. 1.Department of ChemistryAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations