Research on Chemical Intermediates

, Volume 33, Issue 8, pp 749–774 | Cite as

Introduction of vanadium species in β zeolite by solid-state reaction: spectroscopic study of V speciation and molecular mechanism

Article

Abstract

V-containing β zeolites were prepared by solid-state reaction between V2O5 and β zeolite. The zeolite structure was analysed by XRD and N2 physisorption. The V speciation was studied by chemical analysis and different spectroscopies (FT-IR, 27Al-NMR, UV-Vis, EPR, photoluminescence). After calcination of V2O5-β zeolite mechanical mixtures at 500°C, three kinds of V species were identified: (i) oligomeric vanadates with octahedral V5+ easily removed by treatment with NH4OAc, (ii) isolated vanadyl (V=O)2+ ions in axially distorted octahedral or square pyramidal environment, interacting with framework and/or extraframework Al nuclei and (iii) isolated V5+ in tetrahedral and octahedral environments, localized in framework defect sites. The amount of the latter species is higher when water vapor is present during calcination and when parent β zeolite contains a high concentration of defect sites generated by a strong acid pretreatment. Isolated V5+ are easily reduced to tetrahedral V4+ or to square pyramidal (V=O)2+. Possible models of the mechanism of formation of V species by solid-state reaction and further reduction are proposed.

Keywords

β zeolite vanadium speciation solid-state reaction dealumination defects FT-IR EPR UV-Vis photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Notari, Adv. Catal. 41, 253 (1996).Google Scholar
  2. 2.
    M. Sasidharan and R. Kumar, J. Catal. 220, 326 (2003).CrossRefGoogle Scholar
  3. 3.
    A. Thangaraj, S. Sivasanker and P. Ratnasamy, J. Catal. 131, 394 (1991).CrossRefGoogle Scholar
  4. 4.
    R. J. Saxton, J. G. Zajacek and G. L. Crocco, US Patent 5,374,747 (1994).Google Scholar
  5. 5.
    C. Perego, A. Carati, P. Ingallina, M. A. Mantegazza and G. Bellussi, Appl. Catal. A 221, 63 (2001).CrossRefGoogle Scholar
  6. 6.
    C. B. Khouw and M. E. Davis, J. Catal. 151, 77 (1995).CrossRefGoogle Scholar
  7. 7.
    G. C. Bond, A. J. Sarkany and G. D. Parfitt, J. Catal. 57, 476 (1979).CrossRefGoogle Scholar
  8. 8.
    G. Centi, F. Trifiro, J. R. Ebner and V. M. Franchetti, Chem. Rev. 88, 55 (1988).CrossRefGoogle Scholar
  9. 9.
    M. S. Rigutto and H. van Bekkum, Appl. Catal. 68, L1 (1991).CrossRefGoogle Scholar
  10. 10.
    G. Centi, S. Perathoner, F. Trifiro, A. Aboukais, C. F. Aissi and M. Guelton, J. Phys. Chem. 96, 2617 (1992).CrossRefGoogle Scholar
  11. 11.
    P. R. H. Rao, A. V. Ramaswamy and P. Ratnasamy, J. Catal. 137, 225 (1992).CrossRefGoogle Scholar
  12. 12.
    B. I. Whittington and J. R. Anderson, J. Phys. Chem. 97, 1032 (1993).CrossRefGoogle Scholar
  13. 13.
    K. M. Reddy, I. Moudrakovski and A. Sayari, J. Chem. Soc., Chem. Commun., 1491 (1994).Google Scholar
  14. 14.
    J. M. Lopez Nieto, Topics Catal. 15, 189 (2001).CrossRefGoogle Scholar
  15. 15.
    T. Sen, M. Chatterjee and S. Sivasanker, J. Chem. Soc., Chem. Commun., 207 (1995).Google Scholar
  16. 16.
    A. Tuel and Y. Ben Taârit, Appl. Catal. 102, 201 (1993).CrossRefGoogle Scholar
  17. 17.
    El-M. El-Malki, B. Manohar, A. Davidson, P. Massiani, S. Sivasanker and M. Che, J. Chim. Phys. 94, 1848 (1997).Google Scholar
  18. 18.
    T. Sen, V. Ramaswamy, S. Ganapathy, P. R. Rajamohanan and S. Sivasanker, J. Phys. Chem. 100, 3809 (1996).CrossRefGoogle Scholar
  19. 19.
    P. R. H. Rao and A. V. Ramaswamy, Appl. Catal. A 93, 123 (1993).CrossRefGoogle Scholar
  20. 20.
    C. Ferrini and H. W. Kouwenhoven, Stud. Surf. Sci. Catal. 55, 53 (1990).Google Scholar
  21. 21.
    B. Kraushaar and J. H. C. van Hooff, Catal. Lett. 1, 81 (1988).CrossRefGoogle Scholar
  22. 22.
    S. Dzwigaj, M. J. Peltre, P. Massiani, A. Davidson, M. Che, T. Sen and S. Sivasanker, J. Chem. Soc. Chem. Commun., 87 (1998).Google Scholar
  23. 23.
    S. Dzwigaj, P. Massiani, A. Davidson and M. Che, J. Mol. Catal. A 155, 169 (2000).CrossRefGoogle Scholar
  24. 24.
    J. A. Rabo, M. L. Poutsma and G. W. Skeels, in: Proceedings of the 5th International Congress on Catalysis, J. W. Hightower (Ed.), p. 1353. North-Holland, New York, NY (1973).Google Scholar
  25. 25.
    A. Clearfield, C. H. Saldarriaga and R. C. Buckley, in: Proceedings of the 3rd International Conference on Molecular Sieves, J. B. Uytterhoeven (Ed.), p. 241. University of Leuwen Press, Leuven (1973).Google Scholar
  26. 26.
    H. G. Karge, Stud. Surf. Sci. Catal. 105, 1901 (1997).Google Scholar
  27. 27.
    C. Stolz, A. Sauvage, P. Massiani and R. Kramer, Appl. Catal. A 167, 113 (1998).CrossRefGoogle Scholar
  28. 28.
    J. Weitkamp, S. Ernst, T. Bock, A. Kiss, P. Kleinschmit, Stud. Surf. Sci. Catal. 94, 278 (1995).Google Scholar
  29. 29.
    G. L. Price and V. Kanazirev, J. Catal. 126, 267 (1990).CrossRefGoogle Scholar
  30. 30.
    P. Mériaudeau and C. Naccache, Appl. Catal. 73, L13 (1991).CrossRefGoogle Scholar
  31. 31.
    J. L. G. Fierro, J. C. Conesa and A. Lopez Agudo, J. Catal. 108, 334 (1987).CrossRefGoogle Scholar
  32. 32.
    R. Haase, H. G. Jerschkewitz, G. Ohlmann, J. Richter-Mendau and J. Scheve, Stud. Surf. Sci. Catal.. 3, 615 (1979).Google Scholar
  33. 33.
    A. V. Kucherov and A. A. Slinkin, Zeolites 7, 583 (1987).CrossRefGoogle Scholar
  34. 34.
    A. V. Kucherov, A. A. Slinkin, G. K. Beyer and G. Borbely, J. Chem. Soc. Faraday Trans. 85, 2737 (1989).CrossRefGoogle Scholar
  35. 35.
    M. Huang, S. Yuan, Y. Li and Q. Wang, Zeolites 10, 772 (1990).CrossRefGoogle Scholar
  36. 36.
    R. Dimitrova, Y. Neinska, M. Mihalyi, G. Pal-Borbely and M. Spassova, Appl. Catal. A 266, 123 (2004).CrossRefGoogle Scholar
  37. 37.
    El-M. El-Malki, S. Dzwigaj, P. Massiani, A. Davidson and M. Che, in: Proceedings of the 12th International Zeolite Conference, M. M. J. Treacy, B. K. Marcus, M. E. Bischer and J. B. Higgins (Eds), p. 2171 (1999).Google Scholar
  38. 38.
    D. M. Templeton, F. Ariese, R. Cornelis, L. G. Danielson, H. Muntan, H. P. Van Leeuwen and R. Lobinski, Pure Appl. Chem. 72, 1453 (2000).CrossRefGoogle Scholar
  39. 39.
    K. Dyrek, A. Madej, E. Mazur and A. Rokosz, Coll. Surf. 45, 135 (1990).CrossRefGoogle Scholar
  40. 40.
    S. Dzwigaj, El-M. El-Malki, M. J. Peltre, P. Massiani, A. Davidson and M. Che, Top. Catal. 11–12, 379 (2000).CrossRefGoogle Scholar
  41. 41.
    El-M. El-Malki, PhD Thesis. University Pierre & Marie Curie, Paris (1998).Google Scholar
  42. 42.
    M. Maache, A. Janin, J. C. Lavalley, J. F. Joly and E. Benazzi, Zeolites 13, 419 (1993).CrossRefGoogle Scholar
  43. 43.
    A. Jia, P. Massiani and D. Barthomeuf, J. Chem. Soc. Faraday Trans. 89, 3659 (1993).CrossRefGoogle Scholar
  44. 44.
    R. B. Borade and A. Clearfield, J. Phys. Chem. 96, 6729 (1992).CrossRefGoogle Scholar
  45. 45.
    I. Kiricsi, C. Flego, G. Pazzuconi, W. O. Parker Jr., R. Millini, C. Perego and G. Bellussi, J. Phys. Chem. 98, 4627 (1994).CrossRefGoogle Scholar
  46. 46.
    K. Yamagishi, S. Namba and T. Yashima, J. Phys. Chem. 95, 872 (1991).CrossRefGoogle Scholar
  47. 47.
    R. M. Dessau, K. D. Schmitt, G. T. Kerr, G. L. Woolery and L. B. Alemany, J. Catal. 104, 484 (1987).CrossRefGoogle Scholar
  48. 48.
    B. Kraushaar, J. W. De Haan and J. H. C. van Hooff, J. Catal. 109, 407 (1988).CrossRefGoogle Scholar
  49. 49.
    El-M. El-Malki, R. van Santen and W. H. M. Sachtler, J. Phys. Chem. B 103, 4611 (1999).CrossRefGoogle Scholar
  50. 50.
    E. Bourgeat-Lami, P. Massiani, F. Di Renzo, F. Espiau and F. Fajula, Appl. Catal. 72, 139 (1991).CrossRefGoogle Scholar
  51. 51.
    A. B. P. Lever, Inorganic Electronic Spectroscopy. Elsevier, New York, NY (1984).Google Scholar
  52. 52.
    G. Rasch, H. Bogel and C. Rein, Z. Phys. Chem. 259, 955 (1978).Google Scholar
  53. 53.
    G. Lischke, W. Hanke, H. G. Jerschkewitz and G. Ohlmann, J. Catal. 91, 54 (1985).CrossRefGoogle Scholar
  54. 54.
    L. Brus, J. Phys. Chem. 90, 2555 (1986).CrossRefGoogle Scholar
  55. 55.
    T. Blasco, P. Concepcion, J. M. Lopez Nieto and J. Perez-Pariente, J. Catal. 152, 1 (1995).CrossRefGoogle Scholar
  56. 56.
    J. Kornatowski, B. Wichterlova, J. Jirkovsky, E. Loffler and W. Pilz, J. Chem. Soc., Faraday Trans. 92, 1067 (1996).CrossRefGoogle Scholar
  57. 57.
    M. Morey, A. Davidson, H. Eckert and G. Stucky, Chem. Mater. 8, 486 (1996).CrossRefGoogle Scholar
  58. 58.
    Z. Luan, J. Xu, H. He, J. Klinowski and L. Kevan, J. Phys. Chem. 100, 19595 (1996).Google Scholar
  59. 59.
    J. Selbin, Chem. Rev. 65, 153 (1965).CrossRefGoogle Scholar
  60. 60.
    N. Gharbi, C. Sanchez, J. Livage, J. Lemerle, L. Nejem and J. Lefebvre, Inorg. Chem. 21, 2758 (1982).CrossRefGoogle Scholar
  61. 61.
    E. C. Alyea and D. C. Bradley, J. Chem Soc. A. 16, 2330 (1969).CrossRefGoogle Scholar
  62. 62.
    D. C. Crans, H. Chen and R. A. Felty, J. Am. Chem. Soc. 114, 4543 (1992).CrossRefGoogle Scholar
  63. 63.
    F. Cartan and C. N. Caughlan, J. Phys. Chem. 64, 1756 (1960).CrossRefGoogle Scholar
  64. 64.
    M. Anpo, M. Sunamoto and M. Che, J. Phys. Chem. 93, 1187 (1989).CrossRefGoogle Scholar
  65. 65.
    M. Anpo, M. Sunamoto, T. Fujii, H. H. Patterson and M. Che, Res. Chem. Intermed. 11, 245 (1989).CrossRefGoogle Scholar
  66. 66.
    M. Anpo, I. Tanahashi and Y. Kubokawa, J. Phys. Chem. 84, 3440 (1980).CrossRefGoogle Scholar
  67. 67.
    M. Anpo and M. Che, Adv. Catal. 44, 119 (1999).Google Scholar
  68. 68.
    H. H. Patterson, J. Cheng, S. Despres, M. Sunamoto and M. Anpo, J. Phys. Chem. 95, 8813 (1991).CrossRefGoogle Scholar
  69. 69.
    M. Iwamoto, H. Furukawa, K. Matsukami, T. Takenaka and S. Kagawa, J. Am. Chem. Soc. 105, 3719 (1983).CrossRefGoogle Scholar
  70. 70.
    M. Anpo, S. G. Zhang, H. Mishima, M. Matsuoka and H. Yamashita, Catal. Today 39, 159 (1997).CrossRefGoogle Scholar
  71. 71.
    S. Dzwigaj, M. Matsuoka, R. Franck, M. Anpo and M. Che, J. Phys. Chem. B 102, 6309 (1998).CrossRefGoogle Scholar
  72. 72.
    S. Dzwigaj, M. Matsuoka, R. Franck, M. Anpo and M. Che, J. Phys. Chem. B 104, 6012 (2000).CrossRefGoogle Scholar
  73. 73.
    S. Dzwigaj, M. Matsuoka, M. Anpo and M. Che, Res. Chem. Intermed. 29, 665 (2003).CrossRefGoogle Scholar
  74. 74.
    A. Kahn, J. Livage and R. Collongues, Phys. Status Solidi A 26, 175 (1974).CrossRefGoogle Scholar
  75. 75.
    G. Busca, G. Centi, L. Marchetti and F. Trifiro, Langmuir 2, 568 (1986).CrossRefGoogle Scholar
  76. 76.
    B. A. Goodman and J. B. Raynor, Adv. Inorg. Chem. Radiochem. 13, 135 (1970).Google Scholar
  77. 77.
    C. J. Ballhausen and H. B. Gray, Inorg. Chem. 1, 111 (1962).CrossRefGoogle Scholar
  78. 78.
    F. E. Mabbs and D. J. Machin, Magnetism and Transition Metal Complexes. Chapman and Hall, London (1973).Google Scholar
  79. 79.
    V. K. Sharma, A. Wokaun and A. Baiker, J. Phys. Chem. 90, 2715 (1986).CrossRefGoogle Scholar
  80. 80.
    U. Scharf, M. Schraml-Marth, A. Wokaun and A. Baiker, J. Chem. Soc. Faraday Trans. 87, 3299 (1991).CrossRefGoogle Scholar
  81. 81.
    C. E. Sass, X. Chen and L. Kevan, J. Chem. Soc. Faraday Trans. 86, 189 (1990).CrossRefGoogle Scholar
  82. 82.
    M. Che, B. Canosa and A. R. Gonzalez-Elipe, J. Phys. Chem. 90, 618 (1986).CrossRefGoogle Scholar
  83. 83.
    S. Digregorio, M. Greenblatt, J. H. Pifer and M. D. Sturge, J. Chem. Phys. 76, 2931 (1982).CrossRefGoogle Scholar
  84. 84.
    E. Fritsch, F. Babonneau, C. Sanchez and G. Calas, J. Non-Cryst. Solids 92, 282 (1987).CrossRefGoogle Scholar
  85. 85.
    C. E. Holloway, F. E. Mabbs and W. R. Smail, J. Chem. Soc. A 12, 2980 (1968).CrossRefGoogle Scholar
  86. 86.
    G. F. Kokoszka, H. C. Allen and G. Gordon, Inorg. Chem. 5, 91 (1966).CrossRefGoogle Scholar
  87. 87.
    J. Dedecek and B. Wichterlova, J. Phys. Chem. B 103, 1462 (1999).CrossRefGoogle Scholar
  88. 88.
    D. Hoenicke and J. Xu, J. Phys. Chem. 92, 4699 (1988).CrossRefGoogle Scholar
  89. 89.
    H. Knoezinger and E. Taglauer, Catalysis 10, 1 (1993).CrossRefGoogle Scholar
  90. 90.
    O. Glemser and H. G. Wendlandt, Angew. Chem. 75, 949 (1963).CrossRefGoogle Scholar
  91. 91.
    J. Leyrer, R. Margraf, E. Taglauer and H. Knoezinger, Surface Sci. 201, 603 (1988).CrossRefGoogle Scholar
  92. 92.
    E. Z. Muller, Chem. Ind. Koll. 8, 302 (1911).CrossRefGoogle Scholar
  93. 93.
    N. L. Yannopoulos, J. Phys. Chem. 72, 3293 (1968).CrossRefGoogle Scholar
  94. 94.
    O. Glemser and A. Muller, Z. Anorg. Allg. Chem. 325, 220 (1963).CrossRefGoogle Scholar
  95. 95.
    K. Yamagishi, S. Namba and T. Yashima, J. Catal. 121, 47 (1990).CrossRefGoogle Scholar
  96. 96.
    P. Wu and T. Komatsu, J. Phys. Chem. 99, 10923 (1995).Google Scholar
  97. 97.
    S. Namba, K. Yamagishi and T. Yashima, Chem. Lett., 1109 (1987).Google Scholar
  98. 98.
    P. R. H. Rao, A. A. Belhekar, S. H. Egde, A. V. Ramaswamy and P. Ratnasamy, J. Catal. 141, 595 (1993).CrossRefGoogle Scholar
  99. 99.
    B. I. Whittington and J. R. Anderson, J. Phys. Chem. 95, 3306 (1991).CrossRefGoogle Scholar

Copyright information

© VSP 2007

Authors and Affiliations

  • El-Mekki El-Malki
    • 1
  • Pascale Massiani
    • 1
  • Michel Che
    • 2
  1. 1.Laboratorie de Réactivité de SurfaceUMR 7609 CNRS, Université Pierre et Marie CurieParis Cedex 05France
  2. 2.Institut Universitaire de FranceParisFrance

Personalised recommendations