Research on Chemical Intermediates

, Volume 33, Issue 7, pp 613–622 | Cite as

Conversion of a Direct Process high-boiling residue to monosilanes by a two-step catalysis approach

Article

Abstract

The effects of different kinds of catalysts and supports on the conversion of a Direct Process high-boiling residue to monosilanes were evaluated. A new method, a two-step catalysis approach, was used for catalytic decomposition and redistribution reactions. The effects of reaction temperature, volume ratio of starting materials, feeding rate and reaction pressure on the conversion were investigated. While employing activated carbon as the decomposition catalyst and γ-Al2O3 for redistribution, which constituted the two-step catalysis approach, improved yield of methylchlorosilanes and dimethyldichlorosilane, and higher conversion of high-boiling components decomposition could be obtained. This two-step catalysis approach could be run under normal pressure or low pressure, which would solve the disadvantageous factors generated from the high-pressure process.

Keywords

High-boiling residue methylchlorosilane decomposition redistribution dimethyldichlorosilane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Rochow, J. Am. Chem. Soc. 67, 963 (1945).CrossRefGoogle Scholar
  2. 2.
    W. J. Ward, A. Ritzer, K. M. Carroll and J. W. Flock, J. Catal. 100, 240 (1996).CrossRefGoogle Scholar
  3. 3.
    D. H. Sun and B. E. Bent, Catal. Lett. 46, 127 (1997).CrossRefGoogle Scholar
  4. 4.
    D. Seyferth, Organometallics 20, 4978 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Okamoto, T. Chikamori, T. Asano and E. Suzuki, Organometallics 23, 595 (2004).CrossRefGoogle Scholar
  6. 6.
    W. Noll, Chemistry and Technology of Silicons. Academic Press, New York, NY (1968).Google Scholar
  7. 7.
    Z. M. Gucun and G. Y. Anben, Organic Synthesize Chemistry. Science and Technology Press, Tokyo (1982).Google Scholar
  8. 8.
    H. J. Sun, J. New Mater. Chem. Ind. 8, 3 (1997).Google Scholar
  9. 9.
    J. K. Zhang, J. Chem. World 7, 339 (1996).Google Scholar
  10. 10.
    W. X. Luo, G. R. Wang and J. F. Wang, Ind. Eng. Chem. Res. 45, 129 (2006).CrossRefGoogle Scholar
  11. 11.
    K. H. Brookes, M. R. H. Siddiqui, H. M. Rong, R. W. Joyner and G. J. Hutchings, Appl. Catal. A: General 206, 257 (2006).CrossRefGoogle Scholar
  12. 12.
    R. J. H. Voorhoeve, Organohalosilanes: Precursors to Silicones. Elsevier, Amsterdam (1967).Google Scholar
  13. 13.
    L. Liu, J. Petrochem. Sci. Technol. Appl. 18, 167 (2000).Google Scholar
  14. 14.
    Z. D. Du, J. H. Chen and X. L. Bei, Organic Chemistry. High Education Press, Beijing (1990).Google Scholar
  15. 15.
    B. A. Bluestein, US Patent 2,717,257 (1955).Google Scholar
  16. 16.
    D. Mohler and J. E. Sellers, US Patent 2,598,435 (1952).Google Scholar
  17. 17.
    A. J. Barry and J. W. Gilkey, US Patent 2,681,355 (1954).Google Scholar
  18. 18.
    K. M. Chadwick, A. K. Dhaul, R. L. Halm, R. G. Johnson and R. D. Steinmeyer, US Patent 5,321,147 (1994).Google Scholar
  19. 19.
    B. R. Crum, S. K. Freeburne and L. H. Wood, US Patent 5,907,050 (1999).Google Scholar
  20. 20.
    J. A. Brinson, B. R. Crum and R. F. Jarvis Jr, US Patent 6,013,235 (2000).Google Scholar
  21. 21.
    B. R. Crum and L. H. Wood, US Patent 5,922,894 (1999).Google Scholar
  22. 22.
    W. Kalchauer and B. Pachaly, US Patent 5,210,255 (1993).Google Scholar
  23. 23.
    S. K. Freeburne and R. F. Jarvis Jr, US Patent 5,629,438 (1997).Google Scholar
  24. 24.
    K. M. Chadwick, A. K. Dhaul, R. L. Halm and R. G. Johnson, US Patent 5,292,912 (1994).Google Scholar
  25. 25.
    M. Kumada and K. Tamao, Adv. Organomet. Chem. 6, 19 (1968).Google Scholar
  26. 26.
    E. Hengge, Top. Curr. Chem. 51, 1 (1974).CrossRefGoogle Scholar
  27. 27.
    G. N. Brokerman, J. P. Cannady and A. E. Ogilvy, US Patent 5,175,329 (1992).Google Scholar
  28. 28.
    A. Ritzer, A. L. Hajjar, H. R. McEntee and R. W. Shade, US Patent 4,393,229 (1983).Google Scholar
  29. 29.
    J. A. Brinson, S. K. Freeburne and R. F. Jarivis Jr, US Patent 5,606,090 (1997).Google Scholar
  30. 30.
    K. M. Chadwick, A. K. Dhaul, R. L. Halm and R. G. Johnson, US Patent 5,292,909 (1994).Google Scholar
  31. 31.
    P. Carvalho, S. M. Thomaz and L. M. Bini, Braz. J. Biol. 65, 51 (2005).CrossRefGoogle Scholar
  32. 32.
    H. R. McEntee and N. Y. Waterford, US Patent 3,793,357 (1974).Google Scholar

Copyright information

© VSP 2007

Authors and Affiliations

  1. 1.Department of ChemistryNanchang UniversityNanchangP. R. China

Personalised recommendations