Advertisement

Research on Chemical Intermediates

, Volume 33, Issue 3–5, pp 433–448 | Cite as

TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: role of metal and macrocycle

  • Giuseppe Mele
  • Roberta del Sole
  • Giuseppe Vasapollo
  • Elisa García-López
  • Leonardo Palmisano
  • Li Jun
  • Rudolf Słota
  • Gabriela Dyrda
Article

Abstract

Photodegradation of organic compounds in water solutions by means of economically advantageous and environment-friendly processes is a topic of growing interest. In recent years a great attention has been devoted to TiO2-based photocatalysts for the oxidative degradation of various organic pollutants. In this context, we have prepared new photo-catalytic polycrystalline TiO2 systems impregnated with sensitizers, i.e., copper, iron or manganese porphyrins, and investigated their photoactivity for 4-nitrophenol oxidation compared with that of bare TiO2. A significant improvement of the photoreactivity was observed in the case of TiO2 impregnated with copper porphyrin, while only a slight beneficial effect was observed in the case of iron porphyrin. In contrast, the presence of manganese porphyrin appeared to be detrimental.

Keywords

Titanium dioxide porphyrins sensitizers photocatalysis photochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schiavello, Photocatalysis and Environment, Trends and Applications, Kluwer, Dordrecht (1988).Google Scholar
  2. 2.
    K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, Bull. Chem. Soc. Jpn. 58, 2015 (1985).CrossRefGoogle Scholar
  3. 3.
    V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero and E. Pelizzetti, Toxicol. Environ. Chem. 16, 89 (1988).CrossRefGoogle Scholar
  4. 4.
    E. Pelizzetti and N. Serpone, Photocatalysis, Fundamental and Applications, Wiley, New York, NY (1989).Google Scholar
  5. 5.
    D. Ollis, E. Pelizzetti and N. Serpone, Environ. Sci. Technol. 25, 1555 (1990).Google Scholar
  6. 6.
    D. F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam (1993).Google Scholar
  7. 7.
    M. Schiavello, Heterogeneous Photocatalysis, Wiley Series in Photoscience and Photoengineering, Volume 3, Wiley, Chichester (1997).Google Scholar
  8. 8.
    V. Augugliaro, V. Loddo, G. Marcì, L. Palmisano and M. J. López-Muñoz, J. Catal. 166, 272 (1997).CrossRefGoogle Scholar
  9. 9.
    A. Fujishima, K. Hashimoto and T. Watanabe, TiO 2 Photocatalysis. Fundamentals and Applications, BKC, Tokyo (1999).Google Scholar
  10. 10.
    V. Augugliaro, A. Di Paola, V. Loddo, G. Marcì, L. Palmisano and M. Schiavello, Catal. Catal. 41, 73 (1999).Google Scholar
  11. 11.
    L. Palmisano, Processi e Metodologie per il Trattamento delle Acque. Spiegel, Milan (2000).Google Scholar
  12. 12.
    J. A. H. Melián, J. M. Dona Rodríguez, A. V. Suárez, E. T. Rendón, C. Valdés do Campo, J. Araña and J. Pérez Penã, Chemosphere 41, 323 (2000).CrossRefGoogle Scholar
  13. 13.
    A. Di Paola, V. Augugliaro, L. Palmisano, G. Pantaleo and E. Savinov, J. Photochem, Photobiol. A: Chem. 155, 207 (2003).CrossRefGoogle Scholar
  14. 14.
    Y. Muratami, J. Kikuchi, Y. Hisaeda and O. Hayashida, Chem. Rev. 96, 721 (1996).CrossRefGoogle Scholar
  15. 15.
    J. van Esch, M. F. M. Roks and R. J. M. Nolte, J. Am. Chem. Soc. 108, 6093 (1986).CrossRefGoogle Scholar
  16. 16.
    J. R. Lindsay Smith, in Metalloporphyrins in Catalytic Oxidations, R. G. Sheldon (Ed.), chapter 11. Marcel Dekker, New York, NY (1994).Google Scholar
  17. 17.
    A. Maldotti, L. Andreotti, A. Molinari and V. Carassiti, J. Biol. Inorg. Chem. 4, 154 (1999).CrossRefGoogle Scholar
  18. 18.
    B. Meunier, A. Robert, G. Pratviel and J. Bernadou, in The Porphyrin Handbook, Volume 4, K. M. Kadish, K. M. Smith and R. Guilard (Eds), p. 119. Academic Press, San Diego, CA (2000).Google Scholar
  19. 19.
    G. Mele, G. Ciccarella, G. Vasapollo, E. García-López, L. Palmisano and M. Schiavello, Appl. Catal. B: Environ. 38, 309 (2002).CrossRefGoogle Scholar
  20. 20.
    G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano and M. Schiavello, J. Catal. 217, 334 (2003).Google Scholar
  21. 21.
    G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano, O. A. Attanasi and P. Filippone, Green Chem. 6, 604 (2004).CrossRefGoogle Scholar
  22. 22.
    R. Słota and G. Dydra, Inorg. Chem. 42, 5743 (2003).CrossRefGoogle Scholar
  23. 23.
    R. Słota, Ph. D. Thesis, Warsaw University of Technology, Warsaw (1995).Google Scholar
  24. 24.
    A. B. P. Lever, Adv. Inorg. Radiochem. 7, 28 (1965).Google Scholar
  25. 25.
    G. Mele, R. Del Sole, G. Vasapollo, G. Marcì, E. García-López, L. Palmisano, J. M. Coronado, M. D. Hernández-Alonso, C. Malitesta and R. Gualcito, J. Phys. Chem. B 109, 12347 (2005).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Giuseppe Mele
    • 1
  • Roberta del Sole
    • 1
  • Giuseppe Vasapollo
    • 1
  • Elisa García-López
    • 2
  • Leonardo Palmisano
    • 2
  • Li Jun
    • 3
  • Rudolf Słota
    • 4
  • Gabriela Dyrda
    • 4
  1. 1.Dipartimento di Ingegneria dell’InnovazioneUniversità di LecceLecceItaly
  2. 2.Dipartimento di Ingegneria Chimica dei Processi e dei MaterialiUniversità di PalermoPalermoItaly
  3. 3.Department of ChemistryNorthwest UniversityXianPR China
  4. 4.Institute of ChemistryUniversity of OpoleOpolePoland

Personalised recommendations