Research on Chemical Intermediates

, Volume 32, Issue 8, pp 717–724 | Cite as

Preparation and characterization of nitrogen-doped TiO2 photocatalyst in different acid environments

  • Ye Cong
  • Ling Xiao
  • Jinlong Zhang
  • Feng Chen
  • Masakazu Anpo


Nitrogen-doped TiO2 powders were successfully prepared by a wet method, i.e., a micro-emulsion-hydrothermal method, in different acid environments. Several characterization techniques, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra, were combined to determine the crystal phase, concentration and chemical states of the nitrogen doped in TiO2. The high photocatalytic activity of the nitrogen-doped TiO2 was evaluated through the decomposition of rhodanmine B under visible light irradiation. It was suggested that the doped nitrogen formed oxynitride (NO) and produced impurity states at higher above the valence band of TiO2. Therefore, the nitrogen doping could enhance the response of photocatalyst to the visible light and improve the photocatalytic activity because of the narrowing of band gap of TiO2.


Nitrogen doping titanium dioxide microemulsion-hydrothermal visible light photocatalytic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293, 269 (2001).CrossRefGoogle Scholar
  2. 2.
    C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Nanoletters 3, 1049 (2003).Google Scholar
  3. 3.
    J. L. Gole, J. Stout, C. Burda, Y. Lou and X. Chen, J. Phys. Chem. 108, 1230 (2004).Google Scholar
  4. 4.
    W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai, J. Am. Chem. Soc. 126, 4782 (2004).CrossRefGoogle Scholar
  5. 5.
    S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr., Science 297, 2243 (2002).CrossRefGoogle Scholar
  6. 6.
    H. Irie, Y. Watanabe and K. Hashimoto, Chem.Lett. 32, 772 (2003).CrossRefGoogle Scholar
  7. 7.
    S. Sakthivel and H. Kisch, Angew. Chem. Int. Edn. 42, 4908 (2003).CrossRefGoogle Scholar
  8. 8.
    O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck and J. T. Yates, J. Phys. Chem. B 108, 52 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Sakthivel, M. Janczarek and H. Kisch, J. Phys. Chem. B 108, 19384 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Sato, Chem. Phys. Lett. 123, 126 (1986).CrossRefGoogle Scholar
  11. 11.
    X. Chen and C. Burda, J. Phys. Chem. B 108, 15446 (2004).CrossRefGoogle Scholar
  12. 12.
    D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita and N. Ohashi, Chem. Phys. Lett. 401, 579 (2005).CrossRefGoogle Scholar
  13. 13.
    Q. Yang, C. Xie, Z. Xu, Z. Gao and Y. Du, J. Phys. Chem. B 109, 5554 (2005).CrossRefGoogle Scholar
  14. 14.
    H. Irie, Y. Watanabe and K. Hashinoto, J. Phys. Chem. B 107, 5483 (2003).CrossRefGoogle Scholar
  15. 15.
    S. Yin, Q. Zhang, F. Saito and T. Sato, Chem. Lett. 32, 358 (2003).CrossRefGoogle Scholar
  16. 16.
    S. Sato, R. Nakamura and S. Abe, Appl. Catal. A. Gen. 284, 131 (2005).CrossRefGoogle Scholar
  17. 17.
    V. Chhabra, V. Pillai, B. K. Mishra, A. Morrone and D. O. Shah, Langmuir 11, 3307 (1995).CrossRefGoogle Scholar
  18. 18.
    S. Livraghi, A. Votta, M. C. Paganini and E. Giamello, Chem. Commun., 498 (2005).Google Scholar
  19. 19.
    C. D. Valentin, G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, J. Phys. Chem. B 109, 11414 (2005).CrossRefGoogle Scholar

Copyright information

© VSP 2006

Authors and Affiliations

  • Ye Cong
    • 1
  • Ling Xiao
    • 1
  • Jinlong Zhang
    • 1
  • Feng Chen
    • 1
  • Masakazu Anpo
    • 2
  1. 1.Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversitySakai, OsakaJapan

Personalised recommendations