Skip to main content
Log in

Photophysical characteristics and density functional theory calculations of indole 2-carboxylic acid in the presence of mercurous ions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Many photo-physical studies have been reported for the detection of Hg2+ ions. Here we present the effect of Hg 2+2 ions on the absorption and fluorescence of indole-2-carboxylic acid (I2C). Experimental evidence, supported by density functional theory B3LYP/LANL2DZ/PCM, for the formation of a I2C-Hg 2+2 complex, is reported for the first time. It was observed that I2C forms a ground-state complex with Hg 2+2 ions in a ratio of 3:1. The possibility of I2C to be used as a selective novel chemical sensor for the spectrophotometric detection of mercurous ions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Caric, V. Tomisic, M. Kveder, N. Galic, G. Pifat, V. Magnus and M. Soskic, Biophys. Chem. 111, 247 (2004).

    Article  CAS  Google Scholar 

  2. J. O. Nriagu and J. M. Pacyna, Nature 333, 134 (1988).

    Article  CAS  Google Scholar 

  3. C. Orvig and M. J. Adams, Chem. Rev. 99, 2200 (1999).

    Article  CAS  Google Scholar 

  4. M. Tabak, G. Sartor and P. Cavatorta, J. Luminesc. 43, 355 (1989).

    Article  CAS  Google Scholar 

  5. J. Pesek, H. Abpikar and J. Becker, Appl. Spectrosc. 42, 473 (1988).

    Article  CAS  Google Scholar 

  6. A. Tine and J. J. Aaron, Anal. Chim. Acta 227, 181 (1989).

    Article  CAS  Google Scholar 

  7. A. Jonsson, in: Encyclopedia of Plant Physiology, W. Ruhland (Ed.), Vol. 14, p. 959. Springer, Berlin (1961).

    Google Scholar 

  8. J. Westall, in: Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface. W. Stumm (Ed.), p. 3. Wiley, New York, NY (1987).

    Google Scholar 

  9. N. S. Bloom, G. A. Gill, S. Cappellino, C. Dobbs, L. McShea, C. Driscoll, R. Mason and J. Rudd, Environ. Sci. Technol. 33, 7 (1999).

    Article  CAS  Google Scholar 

  10. K. Z. Braininaa, N. Y. Stozhko and Z. V. Shlygina, Anal. Chem. 57, 945 (2002).

    Article  Google Scholar 

  11. A. B. Descalzo, R. Martinez-Mañez, R. Redeglia, K. Rurack and J. Soto, J. Am. Chem. Soc. 125, 3418 (2003).

    Article  CAS  Google Scholar 

  12. J. Yoon, N. E. Ohler, D. H. Vance, W. D. Aumiller and A. W. Czarnic, Tetrahedron Lett. 38, 3845 (1997).

    Article  CAS  Google Scholar 

  13. E. M. Nolan and S. J. Lippard, J. Am. Chem. Soc. 125, 14270 (2003).

    Article  CAS  Google Scholar 

  14. E. Palomares, R. Vilar and J. Durrant, Chem. Commun. 4, 362 (2004).

    Article  CAS  Google Scholar 

  15. A. Ono and H. Togashi, Angew. Chem. Int. Edn. 43, 4300 (2004).

    Article  CAS  Google Scholar 

  16. M. Krishnamuthy, A. Mishra and S. K. Dogra, Photochem. Photobiol. 45, 359 (1987).

    Google Scholar 

  17. M. Krishnamuthy, H. K. Sinha and S. K. Dogra, J. Luminesc. 35, 343 (1985).

    Article  Google Scholar 

  18. P. Bangal and S. Chakravorti, J. Phys. Chem. A, 103, 8585 (1999).

    Article  CAS  Google Scholar 

  19. J. J. Aaron, A. Tine, M. E. Wojciechowska and C. Parkanyi, J. Luminesc. 33, 33 (1985).

    Article  CAS  Google Scholar 

  20. Z. D. Hill and P. MacCarthy, J. Chem. Educ. 63, 162 (1986).

    Article  CAS  Google Scholar 

  21. J. Franke and F. Vogtle, Top. Curr. Chem. 132, 13 (1986).

    Google Scholar 

  22. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  23. A. D. Becke, J. Chem. Phys. 104, 1040 (1996).

    Article  CAS  Google Scholar 

  24. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B37, 785 (1987).

    Google Scholar 

  25. N. Rega, M. Cossi and V. Barone, J. Chem Phys. 105, 11060 (1996).

    Article  CAS  Google Scholar 

  26. V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem. 18, 404 (1998).

    Article  Google Scholar 

  27. G. Klopman, J. Am. Chem. Soc. 90, 223 (1968).

    Article  CAS  Google Scholar 

  28. L. Salem, J. Am. Chem. Soc. 90, 543 (1968).

    Article  CAS  Google Scholar 

  29. L. Salem, J. Am. Chem. Soc. 90, 553 (1968).

    Article  CAS  Google Scholar 

  30. I. Fleming, in: Frontier Orbitals and Organic Chemical Reactions, p. 34. Wiley, London (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kapoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rele, M., Kapoor, S., Hedge, S. et al. Photophysical characteristics and density functional theory calculations of indole 2-carboxylic acid in the presence of mercurous ions. Res Chem Intermed 32, 637–645 (2006). https://doi.org/10.1163/156856706778400299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856706778400299

Keywords

Navigation