Advertisement

Research on Chemical Intermediates

, Volume 32, Issue 3–4, pp 187–204 | Cite as

Methane conversion to C2 hydrocarbons in solid electrolyte membrane reactors

  • Michael Stoukides
Article

Abstract

Solid electrolyte membrane reactors (SEMRs) have been used to both study and influence catalytic reaction rates. Methane coupling is the reaction most thoroughly and intensively studied in these membrane reactors. In the last 20 years, oxygen ion (O2−), proton (H+) and mixed (O2−-e, H+-e) conducting membranes have been tested in order to maximize the conversion of methane to C2 compounds. The present review contains the fundamental operating principles of the various SEMR types and their applications in this reaction. The difficulties that should be overcome in order to promote this SEMR process to an industrial scale are discussed.

Keywords

Review solid electrolyte membrane reactor conducting membrane methane conversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Keller and M. M. Bhasin, J. Catal. 73, 9 (1982).CrossRefGoogle Scholar
  2. 2.
    Y. Amenomiya, V. I. Birss, M. Goledzinowski, J. Galuszka and A. Sanger, Catal. Rev. Sci. Eng. 32, 163 (1990).CrossRefGoogle Scholar
  3. 3.
    D. Eng and M. Stoukides, Catal. Rev. Sci. Eng. 33, 375 (1991).CrossRefGoogle Scholar
  4. 4.
    J. G. Sanchez Marcano and T. T. Tsotsis, Catalytic Membranes and Membrane Reactors, Wiley-VCH, Weinheim (2002).CrossRefGoogle Scholar
  5. 5.
    S. Liu, X. Tan, K. Li and R. Hughes, Catal. Rev. Sci. Eng. 43, 147 (2001).CrossRefGoogle Scholar
  6. 6.
    K. Otsuka, Sekiyu Gakkaishi 30, 385 (1987).Google Scholar
  7. 7.
    J. S. Lee and S. T. Oyama, Catal. Rev. Sci. Eng. 30, 249 (1988).CrossRefGoogle Scholar
  8. 8.
    M. Stoukides, Catal. Rev. Sci. Eng. 42, 1 (2000).CrossRefGoogle Scholar
  9. 9.
    M. Stoukides, J. Appl. Electrochem. 25, 899 (1995).CrossRefGoogle Scholar
  10. 10.
    C. G. Vayenas, S. Bebelis, C. Pliangos, S. Brosda and D. Tsiplakides, Electrochemical Activation of Catalysis, Kluwer/Plenum, New York, NY (2001).Google Scholar
  11. 11.
    K. Otsuka, S. Yokoyama and A. Morikawa, Chem. Lett., 319 (1985).Google Scholar
  12. 12.
    P. J. Gellings and H. J. M. Bouwmeester, The CRC Handbook of Solid State Electrochemistry. CRC Press, New York, NY (1997).Google Scholar
  13. 13.
    K. Otsuka, S. Yokoyama and A. Morikawa, Bull. Chem. Soc. Jpn. 57, 3286 (1984).CrossRefGoogle Scholar
  14. 14.
    K. Otsuka and A. Morikawa, Japanese Patent 61-30688 (1986).Google Scholar
  15. 15.
    S. Seimanides and M. Stoukides, J. Electrochem. Soc. 133, 1535 (1986).CrossRefGoogle Scholar
  16. 16.
    K. Otsuka, K. Suga and I. Yamamaka, Catal. Lett. 1, 423 (1988).CrossRefGoogle Scholar
  17. 17.
    K. Otsuka, K. Suga and I. Yamanaka, Chem. Lett., 317 (1988).Google Scholar
  18. 18.
    D. Eng and M. Stoukides, in: Proceedings of the 9th International Congress on Catalysis, Volume 2, M. J. Phillips and M. Ternan (Eds), p. 974 (1988).Google Scholar
  19. 19.
    N. U. Pujare and A. F. Sammells, J. Electrochem. Soc. 135, 2544 (1988).CrossRefGoogle Scholar
  20. 20.
    B. C. H. Steele, I. Kelly, H. Middleton and R. Rudkin, Solid State Ionics 28–30, 1547 (1988).CrossRefGoogle Scholar
  21. 21.
    T.J. Mazanec, US Patent 4,793,904 (1988).Google Scholar
  22. 22.
    T.J. Mazanec, US Patent 4,802,958 (1989).Google Scholar
  23. 23.
    V. D. Belyaev, V. A. Sobyanin and O. A. Mar’ina, Izv. Sibirsk. Otdel. Akad. Nauk SSSR Ser. Ser. Khim. 1, 27 (1990).Google Scholar
  24. 24.
    H. Nagamoto, K. Hayashi and H. Inoue, J. Catal. 126, 671 (1990).CrossRefGoogle Scholar
  25. 25.
    V. D. Belyaev, O. V. Bazhan, V. A. Sobyanin and V. N. Parmon, in: New Developments in Selective Oxidation, G. Centi and F. Trifiro (Eds), Elsevier, Amsterdam (1990).Google Scholar
  26. 26.
    K. Otsuka, K. Suga and I. Yamanaka, Catal. Today 6, 587 (1990).CrossRefGoogle Scholar
  27. 27.
    D. Eng and M. Stoukides, Catal. Lett. 9, 47 (1991).CrossRefGoogle Scholar
  28. 28.
    D. Eng and M. Stoukides, J. Catal. 130, 306 (1991).CrossRefGoogle Scholar
  29. 29.
    D. J. Kuchynka, R. L. Cook, and A. F. Sammells, J. Electrochem. Soc. 138, 1284 (1991).CrossRefGoogle Scholar
  30. 30.
    J. H. White, E. A. Needham, R. L. Cook and A. F. Sammells, Solid State Ionics 53–56, 149 (1992).CrossRefGoogle Scholar
  31. 31.
    P. Tsiakaras and C. G. Vayenas, J. Catal. 140, 53 (1993).CrossRefGoogle Scholar
  32. 32.
    P. Tsiakaras and C. G. Vayenas, J. Catal. 144, 333 (1993).CrossRefGoogle Scholar
  33. 33.
    A. G. Andersen, T. Hayakawa, K. Suzuki, M. Shimizu and K. Takehira, Catal. Lett. 27, 221 (1994).CrossRefGoogle Scholar
  34. 34.
    Y. Jiang, I. V. Yentekakis and C. G. Vayenas, Science 264, 1563 (1994).CrossRefGoogle Scholar
  35. 35.
    I. V. Yentekakis, Y. Jiang, M. Makri and C. G. Vayenas, Ionics 1, 286 (1995).CrossRefGoogle Scholar
  36. 36.
    G. Dimoulas, S. Markos and P. Tsiakaras, Ionics 3, 453 (1997).CrossRefGoogle Scholar
  37. 37.
    T. Tagawa, K. K. Moe, M. Ito and S. Goto, Chem. Eng. Sci. 54, 1553 (1999).CrossRefGoogle Scholar
  38. 38.
    T. Tagawa, K. K. Moe, T. Hiramatsu and S. Goto, Solid State Ionics 106, 227 (1998).CrossRefGoogle Scholar
  39. 39.
    G. Xiu-Mei, K. Hidajat and C.-B. Ching, Catal. Today 50, 109 (1999).CrossRefGoogle Scholar
  40. 40.
    N. Lapena-Rey and P. H. Middleton, Appl. Catal. A: Gen. 240, 207 (2003).CrossRefGoogle Scholar
  41. 41.
    W. Kiatkittipong, T. Tagawa, S. Goto, S. Assabumrungrat and P. Praserthdam, Solid State Ionics 166, 127 (2004).CrossRefGoogle Scholar
  42. 42.
    T. Tagawa, K. Kuroyanagi, S. Goto, S. Assabumrungrat and P. Praserthdam, Chem. Eng. J. 93, 3 (2004).CrossRefGoogle Scholar
  43. 43.
    T. M. Gür and R. A. Huggins, J. Electrochem. Soc. 126, 1067 (1979).CrossRefGoogle Scholar
  44. 44.
    E. E. Wolf, Methane Conversion by Oxidative Processes. Van Nostrand-Reinhold, New York, NY (1992).Google Scholar
  45. 45.
    T. Ito and J. H. Lunsford, Nature 314, 721 (1985).CrossRefGoogle Scholar
  46. 46.
    J. A. Roos, S. J. Korf, R. H. J. Veehof, J. G. Van Ommen and J. R. H. Ross, Appl. Catal. 52, 131 (1989).CrossRefGoogle Scholar
  47. 47.
    K. Otsuka, K. Jinno and A. Morikawa, J. Catal. 100, 353 (1986).CrossRefGoogle Scholar
  48. 48.
    M. P. Harold, V. T. Zaspalis, K. Keizer and A. J. Burggraaf, Chem. Eng. Sci. 48, 2705 (1993).CrossRefGoogle Scholar
  49. 49.
    H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics 3–4, 359 (1981).CrossRefGoogle Scholar
  50. 50.
    K. Mori, Japanese Patent 62-128901 (1987).Google Scholar
  51. 51.
    K. Mori, Japanese Patent 62-139889 (1987).Google Scholar
  52. 52.
    H. Iwahara, H. Uchida, K. Morimoto and S. Hosogi, J. Appl. Electrochem. 19, 448 (1989).CrossRefGoogle Scholar
  53. 53.
    L. S. Woldman and V. D. Sokolovskii, Catal. Lett. 8, 61 (1991).CrossRefGoogle Scholar
  54. 54.
    P.-H. Chiang, D. Eng and M. Stoukides, J. Electrochem. Soc. 138, L11 (1991).CrossRefGoogle Scholar
  55. 55.
    P.-H. Chiang, D. Eng, H. Alqahtany and M. Stoukides, Solid State Ionics 53–56, 135 (1992).CrossRefGoogle Scholar
  56. 56.
    S. Hamakawa, T. Hibino and H. Iwahara, J. Electrochem. Soc. 140, 459 (1993).CrossRefGoogle Scholar
  57. 57.
    E. A. Hazbun, US Patent 4,791,079 (1988).Google Scholar
  58. 58.
    E. A. Hazbun, US Patent 4,827,071 (1989).Google Scholar
  59. 59.
    J. E. Ten Elshof, H. J. M. Bouwmeeester and H. Verweij, Appl. Catal. 130, 195 (1995).CrossRefGoogle Scholar
  60. 60.
    T. Hibino, T. Sato, K. Ushiki and Y. Yuwahara, J. Chem. Soc. Farad. Trans. 91, 4419 (1995).CrossRefGoogle Scholar
  61. 61.
    T. Hibino, K. Ushiki and Y. Kuwahara, J. Chem. Soc. Chem. Commun., 1001 (1995).Google Scholar
  62. 62.
    J. E. Ten Elshof, B. A. van Hassel and H. J. M. Bouwmeeester, Catal. Today 25, 397 (1995).CrossRefGoogle Scholar
  63. 63.
    W. Wang and Y. S. Lin, J. Membr. Sci. 103, 219 (1995).CrossRefGoogle Scholar
  64. 64.
    Y. S. Lin and Y. Zeng J. Catal. 164, 220 (1996).CrossRefGoogle Scholar
  65. 65.
    Y. Zeng and Y. S. Lin, Ind. Eng. Chem. Res. 36, 277 (1997).CrossRefGoogle Scholar
  66. 66.
    Y. Zeng and Y. S. Lin, Appl. Catal. 159, 101 (1997).CrossRefGoogle Scholar
  67. 67.
    T. J. Mazanec, T. L. Cable, J. G. Frye and W. R. Kliewer, US Patent 5,591,315 (1997).Google Scholar
  68. 68.
    S. J. Xu and W. J. Thomson, AIChE J. 43, 2731 (1997).CrossRefGoogle Scholar
  69. 69.
    S. J. Xu and W. J. Thomson, Chem. Eng. Sci. 54, 3839 (1999).CrossRefGoogle Scholar
  70. 70.
    Y. Zeng and Y. S. Lin, J. Catal, 193, 58 (2000).CrossRefGoogle Scholar
  71. 71.
    Y. Lu, A. G. Dixon, W. R. Moser, Y. H. Ma and U. Balachandran, J. Membr. Sci. 170, 27 (2000).CrossRefGoogle Scholar
  72. 72.
    Y. Lu, A. G. Dixon, W. R. Moser, Y. H. Ma and U. Balachandran, Catal. Today 56, 297 (2000).CrossRefGoogle Scholar
  73. 73.
    H. Wang, Y. Cong and W. Yang, Paper presented at the 6th International Conference on Catalysis in Membrane Reactors, Lahnstein, July 6–9 (2004).Google Scholar
  74. 74.
    K. Omata, S. Hashimoto, H. Tominaga and K. Fujimoto, Appl. Catal. 52, L1 (1989).CrossRefGoogle Scholar
  75. 75.
    T. Nozaki, Y. Osamu, O. Kohji and K. Fujimoto, Chem. Eng. Sci. 47, 2945 (1992).CrossRefGoogle Scholar
  76. 76.
    S. Hamakawa, T. Hibino and H. Iwahara, J. Electrochem. Soc. 141, 1720 (1994).CrossRefGoogle Scholar
  77. 77.
    T. Nozaki and K. Fujimoto, AIChE J. 40, 870 (1994).CrossRefGoogle Scholar
  78. 78.
    K. Omata, O. Yamazaki, K. Tomita and K. Fujimoto, J. Chem. Soc. Commun., 1647 (1994).Google Scholar
  79. 79.
    T. Hibino, A. Masegi and H. Iwahara, J. Electrochem. Soc. 142, L72, (1995).CrossRefGoogle Scholar
  80. 80.
    T. Hibino, K. Ushiki, Y. Kuwahara, A. Masegi and H. Iwahara, J. Chem. Soc. Faraday Trans. 92, 2393 (1996).CrossRefGoogle Scholar
  81. 81.
    J. Langguth, R. Dittmeyer, H. Hofmann and G. Tomandl, Appl. Catal. 158, 287 (1997).CrossRefGoogle Scholar
  82. 82.
    C. Athanasiou G. Marnellos, J. E. Ten Elshof, P. Tsiakaras, H. J. M. Bouwmeester and M. Stoukides, Ionics 3, 128, (1997).CrossRefGoogle Scholar
  83. 83.
    P. Tsiakaras, G. Marnellos, C. Athanasiou M. Stoukides, J. E. Ten Elshof and H. J. M. Bouwmeester, Appl. Catal. 169, 247 (1998).Google Scholar
  84. 84.
    J. H. White, M. Schwartz and A. F. Sammells, US Patent 5,821,185 (1998).Google Scholar
  85. 85.
    P.-H. Chiang, D. Eng and M. Stoukides, Solid State Ionics 61, 99 (1993).CrossRefGoogle Scholar
  86. 86.
    S. Seimanides, P. Tsiakaras, X. Verykios and C. G. Vayenas, Appl. Catal. 68, 41 (1991).CrossRefGoogle Scholar
  87. 87.
    C. L. Chen, P. J. Hong, S. S. Dai and C. C. Zhang, React. Kinet. Catal. Lett. 61, 181 (1997).CrossRefGoogle Scholar
  88. 88.
    D. Eng and M. Stoukides, Catal. Lett. 9, 47 (1991).CrossRefGoogle Scholar
  89. 89.
    G. Marnellos and M. Stoukides, Solid State Ionics 175, 597 (2004).CrossRefGoogle Scholar
  90. 90.
    T. Schober, F. Krug and W. Schilling, Solid State Ionics 97, 369 (1997).CrossRefGoogle Scholar
  91. 91.
    P. J. Gellings and H. J. M. Bouwmeester, Catal. Today 58, 1 (2000).CrossRefGoogle Scholar
  92. 92.
    R. W. Spillman, R. M. Spotnitz and J. T. Lundquist Jr. CHEMTECH 14, 176 (1984).Google Scholar
  93. 93.
    C. G. Vayenas, S. I. Bebelis and C. C. Kyriazis, CHEMTECH, 21, 422 (1991).Google Scholar
  94. 94.
    C. G. Vayenas, S. I. Bebelis and C. C. Kyriazis, CHEMTECH 21, 500 (1991).Google Scholar
  95. 95.
    T. J. Mazanec, Solid State Ionics 70–71, 11 (1994).CrossRefGoogle Scholar
  96. 96.
    P.-H. Chiang, D. Eng and M. Stoukides, Energ. Fuel. 9, 794 (1995).CrossRefGoogle Scholar
  97. 97.
    T. Brousas, P.-H. Chiang, D. Eng and M. Stoukides, Ionics 1, 328 (1995).CrossRefGoogle Scholar
  98. 98.
    K. Otsuka and I. Yamanaka, Catal. Today 41, 331 (1998).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Michael Stoukides
    • 1
  1. 1.Chemical Engineering Department and Chemical Process Engineering Research InstituteUniversity CampusThessalonikiGreece

Personalised recommendations