Advertisement

Research on Chemical Intermediates

, Volume 30, Issue 6, pp 663–672 | Cite as

Titanium-dioxide-mediated photocatalysis reaction of three selected pesticide derivatives

  • M. Muneer
  • M. Saquib
  • M. Qamar
  • D. Bahnemann
Article

Abstract

The photocatalysis reaction of three selected pesticide derivatives, namely methoxychlor (1), chlorothalonil (2) and disulfoton (3), has been investigated in an acetonitrile/water mixture in the presence of titanium dioxide and oxygen. The change as a function of irradiation time has been monitored using the UV spectroscopic analysis technique. An attempt has been made to identify the product formed during the photooxidation process through GC/MS analysis technique. The photolysis of methoxychlor (1) led to the formation of methoxychlor olefin (4) and 4,4′-dimethoxybenzophenone (9), whereas chlorothalonil (2) gave rise to 2,3,4,5-tetrachlorophenol (17) as the only product. On the other hand, the photolysis of disulfoton (3) under analogous conditions gave disulfoton sulfoxide (25) and phosphorodithioic acid (21). All the products have been identified by comparing the molecular ion and mass fragmentation peaks of the products with those reported in the library. A probable mechanism for the formation of the products has been proposed.

PHOTOCATALYSIS TITANIUM DIOXIDE PESTICIDES METHOXYCHLOR CHLOROTHALONIL DISULFOTON 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Z. Z. Cohen, C. Eiden and M. N. Lober, ACS Symp. Ser. 315, 170 (1986).Google Scholar
  2. 2.
    H. B. Pionake and D. E. Glotfelty, Water Res. 23, 1031 (1989).CrossRefGoogle Scholar
  3. 3.
    L. Muszkat, D. Raucher, M. Magaritz and D. Ronen, in: Ground Water Contamination and Control, U. Zoller (Ed.), p. 257. Marcel Dekker, New York, NY (1994).Google Scholar
  4. 4.
    J. A. Graham, Anal. Chem. 63, 631 (1991).Google Scholar
  5. 5.
    R. M. Dowd, M. P. Anderson and M. L. Johnson, in: Proceedings of the Second National Outdoor Action Conference on Aquifer Restoration, p. 1365. GroundWaterMonitoring Geophysical Methods, National Water Well Association, Dublin, OH (1988).Google Scholar
  6. 6.
    J. Moening, D. Bahnemann and K. Asmus, Biol. Interact. 47, 15 (1983).CrossRefGoogle Scholar
  7. 7.
    M. A. Fox, Top. Curr. Chem. 142, 71 (1987).Google Scholar
  8. 8.
    M. A. Fox and M. T. Dulay, Chem. Rev. 93, 341 (1993).Google Scholar
  9. 9.
    H. Kisch, J. Prakt. Chem. 336, 635 (1994).Google Scholar
  10. 10.
    E. Baciocchi, C. Rol, G. V. Sebastiani and L. Taglieri, J. Org. Chem. 59, 5272 (1994).Google Scholar
  11. 11.
    R. Kuenneth, C. Feldmer, F. Knoch and H. Kisch, Chem. Eur. J. 1, 441 (1995).Google Scholar
  12. 12.
    W. Schindler, F. Knoch and H. Kisch, Chem. Ber. 129, 925 (1996).Google Scholar
  13. 13.
    L. Cermenati, M. Mella and A. Albini, Tetrahedron 54, 2575 (1998).CrossRefGoogle Scholar
  14. 14.
    D. F. Ollis, E. Pelizzetti and N. Serpone, in: Photocatalysis, Fundamentals and Applications, N. Serpone and E. Pelizzetti (Eds), p. 603. Wiley-Interscience, New York, NY (1989).Google Scholar
  15. 15.
    R. W. Mathews, in: Photochemical Conversion and Storage of Solar Energy, E. Pelizzetti and M. Schavello (Eds), p. 427. Kluwer, Dordrecht (1991).Google Scholar
  16. 16.
    F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam (1993).Google Scholar
  17. 17.
    A. Mills and S. Le Hunte, J. Photochem. Photobiol. A: Chem. 108, 1 (1997).CrossRefGoogle Scholar
  18. 18.
    P. Pichat, in: Handbook of Heterogeneous Catalysis, G. Ertl, H. Knoezinger and J. Weitcamp (Eds), p. 2111. Wiley, New York, NY (1997).Google Scholar
  19. 19.
    D. W. Bahnemann, J. Cunningham, M. A. Fox, E. Pelizzetti, P. Pichat and N. Serpone, in: Aquatic and Surface Photochemistry, D. Crosby, G. Zepp and R. Zepp (Eds), p. 261. Lewis, Boca Raton, FL (1994).Google Scholar
  20. 20.
    D. M. Blake (Ed.), Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air. National Renewal Energy Laboratory, Boulder, CO (2001).Google Scholar
  21. 21.
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).Google Scholar
  22. 22.
    O. Legrini, E. Oliveros and A. M. Braun, Chem. Rev. 93, 671 (1993).Google Scholar
  23. 23.
    M. Gratzel, Energy Resources Through Photochemistry and Catalysis. Academic Press, New York, NY (1983).Google Scholar
  24. 24.
    R. W. Mathews, J. Chem. Soc. Faraday Trans. 80, 457 (1984).CrossRefGoogle Scholar
  25. 25.
    R. T. Meister (Ed.), Farm Chemicals Handbook. Meister, Willoughby, OH (1988).Google Scholar
  26. 26.
    A. Zaleska, J. Hupka, A. Silowiecki, M. Wiergowski and M. Biziuk, Int. J. Photoenerg. 1, 1 (1999).Google Scholar
  27. 27.
    A. Zaleska, J. Hupka, M. Wiergowski and M. Biziuk, J. Photochem. Photobiol. A: Chem. 135, 213 (2000).CrossRefGoogle Scholar
  28. 28.
    Degussa Technical Bulletin, 56, 8 (1984).Google Scholar
  29. 29.
    R. T. Bickley, G. Carreno, J. Lees, L. Palmisano and R. Tilley, J. Solid State Chem. 92, 178 (1991).CrossRefGoogle Scholar

Copyright information

© 2004 VSP 2004

Authors and Affiliations

  • M. Muneer
  • M. Saquib
  • M. Qamar
  • D. Bahnemann

There are no affiliations available

Personalised recommendations