Skip to main content
Log in

Active Ag species in MFI zeolite for direct methane conversion in the light and dark

  • Full Papers
  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Photo-induced methane conversion was examined over Ag-MFI zeolite at room temperature. On the oxidized Ag-MFI zeolite, containing Ag+ exchanged cations, huge amounts of methane were adsorbed, even in the dark, and then converted to mainly ethane upon photo-irradiation without H2 production. It was revealed that Ag + n small clusters were formed at the expense of Ag+ ion during this photoreaction, and probably hydrogen would be stored as H+ on the ion-exchange sites instead of Ag+. On the other hand, the reduced sample containing larger clusters converted methane into alkene even without photo-irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto and H. Yahiro, Catal. Today 22, 5 (1994).

    Article  CAS  Google Scholar 

  2. Y. Traa, B. Burger and J. Weitkamp, Micropor. Mesopor. Mater. 30, 3 (1999).

    Article  CAS  Google Scholar 

  3. A. Shichi, Y. Kawamura, A. Satsuma and T. Hattori, Stud. Surf. Sci. Catal. 135, 172 (2000).

    Article  Google Scholar 

  4. T. Baba, H. Sawada, T. Takahashi and M. Abe, Appl. Catal. A 231, 55 (2002).

    Article  CAS  Google Scholar 

  5. P. A. Jacobs, J. B. Uytterhoeven and H. K. Beyer, J. Chem. Soc. Chem. Commun., 128 (1977).

  6. S. Leutwyler and S. Schumacher, Chimica 31, 475 (1977).

    CAS  Google Scholar 

  7. M. Anpo, M. Matsuoka and H. Yamashita, Catal. Today 35, 177 (1997).

    Article  CAS  Google Scholar 

  8. S. M. Kanan, M. A. Omary, H. H. Patterson, M. Matsuoka and M. Anpo, J. Phys. Chem. B 104, 3507 (2000).

    Article  CAS  Google Scholar 

  9. M. Matsuoka, W.-S. Ju, H. Yamashita and M. Anpo, J. Synchrotron Radiat. 8, 613 (2001).

    Article  CAS  Google Scholar 

  10. M. Matsuoka, W.-S. Ju and M. Anpo, Stud. Surf. Sci. Catal. 135, 323 (2001).

    Article  Google Scholar 

  11. M. Matsuoka, W.-S. Ju and M. Anpo, Chem. Lett., 626 (2000).

  12. G. A. Ozin and F. Hugues, J. Phys. Chem. 86, 5174 (1982).

    Article  CAS  Google Scholar 

  13. Y. Kato, H. Yoshida and T. Hattori, Micropor. Mesopor. Mater. 51, 223 (2002).

    Article  CAS  Google Scholar 

  14. H. Yoshida, M. G. Chaskar, Y. Kato and T. Hattori, J. Photochem. Photobiol. A 160, 47 (2003).

    Article  CAS  Google Scholar 

  15. Y. Kato, H. Yoshida and T. Hattori, Chem. Commun., 2389 (1998).

  16. H. Yoshida, Y. Kato and T. Hattori, Sutd. Surf. Sci. Catal. 130, 659 (2000).

    Article  Google Scholar 

  17. H. Yoshida, N. Matsushita, Y. Kato and T. Hattori, Phys. Chem. Chem. Phys. 4, 2459 (2002).

    Article  CAS  Google Scholar 

  18. Y. Kato, N. Matsushita, H. Yoshida and T. Hattori, Catal. Commun. 3, 99 (2002).

    Article  CAS  Google Scholar 

  19. T. Uchijima, Catal. Sci. Technol. 1, 393 (1991).

    Google Scholar 

  20. S. Satokawa, J. Shibata, K. Shimizu, A. Satsuma and T. Hattori, Appl. Catal. B 42, 179 (2003).

    Article  CAS  Google Scholar 

  21. M. Nomura and A. Koyama, KEK Report 89-16, 1 (1989).

    Google Scholar 

  22. T. Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans. 84, 2987 (1988).

    Article  CAS  Google Scholar 

  23. C. E. Moore in: Atomic Energy Levels, Vol. 3, pp. 48–54. National Bureau of Standards, Washington, DC (1971).

    Google Scholar 

  24. A. N. Truklin, S. S. Etsin and A. V. Shendrik, Izv. Akad. Nauk SSSR Ser. Fiz. 40, 2329 (1976).

    Google Scholar 

  25. J. Texter, R. Kellerman and T. Gonsiorwski, J. Phys. Chem. 90, 2118 (1986).

    Article  CAS  Google Scholar 

  26. G. A. Ozin and H. Huber, Inorg. Chem. 17, 155 (1978).

    Article  CAS  Google Scholar 

  27. G. A. Ozin, F. Hugues, S. M. Matter and D. F. McIntosh, J. Phys. Chem. 87, 3445 (1983).

    Article  CAS  Google Scholar 

  28. M. L. Costenoble, W. J. Mortier and J. B. Uytterhoeven, J. Chem. Soc., Faraday Trans. 74, 477 (1978).

    Article  CAS  Google Scholar 

  29. K. M. Wang and J. H. Lunsford, J. Phys. Chem. 74, 1512 (1970).

    Article  CAS  Google Scholar 

  30. P. H. Kasai, J. Chem. Phys. 43, 3322 (1965).

    Article  CAS  Google Scholar 

  31. A. Aou-Kais, J. C. Vedrine, J. Massardier and G. Dalmai-Imelik, J. Chem. Soc., Faraday Trans. 70, 1039 (1974).

    Article  Google Scholar 

  32. T. Baba, N. Komatsu, H. Sawada, Y. Yamaguchi, T. Takahashi, H. Sugisawa and Y. Ono, Langmuir 15, 7894 (1999).

    Article  CAS  Google Scholar 

  33. G. A. Ozin and F. Hugues, J. Phys. Chem. 87, 94 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H., Hamajima, T., Kato, Y. et al. Active Ag species in MFI zeolite for direct methane conversion in the light and dark. Res. Chem. Intermed. 29, 897–910 (2003). https://doi.org/10.1163/156856703322601898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856703322601898

Keywords

Navigation