Advertisement

Research on Chemical Intermediates

, Volume 29, Issue 7–9, pp 897–910 | Cite as

Active Ag species in MFI zeolite for direct methane conversion in the light and dark

  • Hisao Yoshida
  • Tomoyo Hamajima
  • Yuko Kato
  • Junji Shibata
  • Atsushi Satsuma
  • Tadashi Hattori
Full Papers

Abstract

Photo-induced methane conversion was examined over Ag-MFI zeolite at room temperature. On the oxidized Ag-MFI zeolite, containing Ag+ exchanged cations, huge amounts of methane were adsorbed, even in the dark, and then converted to mainly ethane upon photo-irradiation without H2 production. It was revealed that Ag n + small clusters were formed at the expense of Ag+ ion during this photoreaction, and probably hydrogen would be stored as H+ on the ion-exchange sites instead of Ag+. On the other hand, the reduced sample containing larger clusters converted methane into alkene even without photo-irradiation.

Keywords

Ag-MFI zeolite photoreaction Ag cluster photoinduced methane conversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Iwamoto and H. Yahiro, Catal. Today 22, 5 (1994).CrossRefGoogle Scholar
  2. 2.
    Y. Traa, B. Burger and J. Weitkamp, Micropor. Mesopor. Mater. 30, 3 (1999).CrossRefGoogle Scholar
  3. 3.
    A. Shichi, Y. Kawamura, A. Satsuma and T. Hattori, Stud. Surf. Sci. Catal. 135, 172 (2000).CrossRefGoogle Scholar
  4. 4.
    T. Baba, H. Sawada, T. Takahashi and M. Abe, Appl. Catal. A 231, 55 (2002).CrossRefGoogle Scholar
  5. 5.
    P. A. Jacobs, J. B. Uytterhoeven and H. K. Beyer, J. Chem. Soc. Chem. Commun., 128 (1977).Google Scholar
  6. 6.
    S. Leutwyler and S. Schumacher, Chimica 31, 475 (1977).Google Scholar
  7. 7.
    M. Anpo, M. Matsuoka and H. Yamashita, Catal. Today 35, 177 (1997).CrossRefGoogle Scholar
  8. 8.
    S. M. Kanan, M. A. Omary, H. H. Patterson, M. Matsuoka and M. Anpo, J. Phys. Chem. B 104, 3507 (2000).CrossRefGoogle Scholar
  9. 9.
    M. Matsuoka, W.-S. Ju, H. Yamashita and M. Anpo, J. Synchrotron Radiat. 8, 613 (2001).CrossRefGoogle Scholar
  10. 10.
    M. Matsuoka, W.-S. Ju and M. Anpo, Stud. Surf. Sci. Catal. 135, 323 (2001).CrossRefGoogle Scholar
  11. 11.
    M. Matsuoka, W.-S. Ju and M. Anpo, Chem. Lett., 626 (2000).Google Scholar
  12. 12.
    G. A. Ozin and F. Hugues, J. Phys. Chem. 86, 5174 (1982).CrossRefGoogle Scholar
  13. 13.
    Y. Kato, H. Yoshida and T. Hattori, Micropor. Mesopor. Mater. 51, 223 (2002).CrossRefGoogle Scholar
  14. 14.
    H. Yoshida, M. G. Chaskar, Y. Kato and T. Hattori, J. Photochem. Photobiol. A 160, 47 (2003).CrossRefGoogle Scholar
  15. 15.
    Y. Kato, H. Yoshida and T. Hattori, Chem. Commun., 2389 (1998).Google Scholar
  16. 16.
    H. Yoshida, Y. Kato and T. Hattori, Sutd. Surf. Sci. Catal. 130, 659 (2000).CrossRefGoogle Scholar
  17. 17.
    H. Yoshida, N. Matsushita, Y. Kato and T. Hattori, Phys. Chem. Chem. Phys. 4, 2459 (2002).CrossRefGoogle Scholar
  18. 18.
    Y. Kato, N. Matsushita, H. Yoshida and T. Hattori, Catal. Commun. 3, 99 (2002).CrossRefGoogle Scholar
  19. 19.
    T. Uchijima, Catal. Sci. Technol. 1, 393 (1991).Google Scholar
  20. 20.
    S. Satokawa, J. Shibata, K. Shimizu, A. Satsuma and T. Hattori, Appl. Catal. B 42, 179 (2003).CrossRefGoogle Scholar
  21. 21.
    M. Nomura and A. Koyama, KEK Report 89-16, 1 (1989).Google Scholar
  22. 22.
    T. Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans. 84, 2987 (1988).CrossRefGoogle Scholar
  23. 23.
    C. E. Moore in: Atomic Energy Levels, Vol. 3, pp. 48–54. National Bureau of Standards, Washington, DC (1971).Google Scholar
  24. 24.
    A. N. Truklin, S. S. Etsin and A. V. Shendrik, Izv. Akad. Nauk SSSR Ser. Fiz. 40, 2329 (1976).Google Scholar
  25. 25.
    J. Texter, R. Kellerman and T. Gonsiorwski, J. Phys. Chem. 90, 2118 (1986).CrossRefGoogle Scholar
  26. 26.
    G. A. Ozin and H. Huber, Inorg. Chem. 17, 155 (1978).CrossRefGoogle Scholar
  27. 27.
    G. A. Ozin, F. Hugues, S. M. Matter and D. F. McIntosh, J. Phys. Chem. 87, 3445 (1983).CrossRefGoogle Scholar
  28. 28.
    M. L. Costenoble, W. J. Mortier and J. B. Uytterhoeven, J. Chem. Soc., Faraday Trans. 74, 477 (1978).CrossRefGoogle Scholar
  29. 29.
    K. M. Wang and J. H. Lunsford, J. Phys. Chem. 74, 1512 (1970).CrossRefGoogle Scholar
  30. 30.
    P. H. Kasai, J. Chem. Phys. 43, 3322 (1965).CrossRefGoogle Scholar
  31. 31.
    A. Aou-Kais, J. C. Vedrine, J. Massardier and G. Dalmai-Imelik, J. Chem. Soc., Faraday Trans. 70, 1039 (1974).CrossRefGoogle Scholar
  32. 32.
    T. Baba, N. Komatsu, H. Sawada, Y. Yamaguchi, T. Takahashi, H. Sugisawa and Y. Ono, Langmuir 15, 7894 (1999).CrossRefGoogle Scholar
  33. 33.
    G. A. Ozin and F. Hugues, J. Phys. Chem. 87, 94 (1983).CrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Hisao Yoshida
    • 1
  • Tomoyo Hamajima
    • 1
  • Yuko Kato
    • 1
  • Junji Shibata
    • 1
  • Atsushi Satsuma
    • 1
  • Tadashi Hattori
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations