Research on Chemical Intermediates

, Volume 29, Issue 7–9, pp 881–890 | Cite as

Visible-light-responsive photocatalytic reaction on tetrahedrally-coordinated chromium oxide moieties loaded on ZSM-5 zeolites and HMS mesoporous silica: partial oxidation of propane

Full Papers

Abstract

Chromium oxide (Cr-oxide) moieties loaded on ZSM-5 zeolites and HMS mesoporous silica molecular sieves were prepared by an impregnation method and characterized by various spectroscopic methods (XRD, XAFS, UV-Vis, photoluminescence) and their photocatalytic reactivities for partial oxidation of propane under visible light irradiation were investigated. The local structure of Cr-oxide species depended to a large extent on the zeolite types and Si/A1 ratios of zeolites. Tetrahedrally-coordinated isolated Cr-oxide moieties can be loaded on HMS and ZSM-5 having the higher Si/A1 ratios. On these catalysts, in the presence of propane and O2, a partial oxidation proceeded under visible light irradiation to produce acetone with high selectivity. The charge-transfer excited state of the tetrahedral Cr-oxide moieties plays a significant role in the selective photocatalytic reactions under visible light irradiation.

Keywords

Photocatalysis zeolite mesoporous silica chromium oxide partial oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Notari, Adv. Catal. 41, 253 (1996).CrossRefGoogle Scholar
  2. 2.
    A. Corma, Chem. Rev. 97, 2373 (1997).CrossRefGoogle Scholar
  3. 3.
    M. Anpo and M. Che, Adv. Catal. 44, 119 (1999).CrossRefGoogle Scholar
  4. 4.
    J. M. Thomas, G. Sankar, M. C. Klundul, M. P. Attfield, T. Maschmeyer, B. F. Johnson and R. G. Bell, J. Phys. Chem. B 103, 8809 (1999).CrossRefGoogle Scholar
  5. 5.
    H. Yamashita, J. L. Zhang, M. Matsuoka and M. Anpo, in: Photofunctional Zeolites: Synthesis, Characterization, Photocatalytic Reactions, Light Harvesting, M. Anpo (Ed.), p. 129. NOVA, New York, NY (2000).Google Scholar
  6. 6.
    H. Yamashita, K. Ikeue, T. Takewaki and M. Anpo, Top. Catal. 18, 95 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Anpo, Y. Ichihashi, M. Takeuchi and H. Yamashita, Res. Chem. Intermed. 24, 143 (1998).CrossRefGoogle Scholar
  8. 8.
    H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi and M. Anpo, J. Synchrotron Radiat. 6, 451 (1999).CrossRefGoogle Scholar
  9. 9.
    H. Yamashita, K. Yoshizawa, M. Ariyuki, S. Higashimoto, M. Che and M. Anpo, Chem. Commun., 435 (2001).Google Scholar
  10. 10.
    H. Yamashita, K. Yoshizawa, M. Ariyuki, S. Higashimoto and M. Anpo, Stud. Surf. Sci. Catal. 141, 495 (2002).CrossRefGoogle Scholar
  11. 11.
    H. Yamashita, M. Ariyuki, S. Higashimoto, S. G. Zhang, J. S. Chang, S. E. Park, J. M. Lee, Y. Matsumura and M. Anpo, J. Synchrotron Radiat. 6, 453 (1999).CrossRefGoogle Scholar
  12. 12.
    H. Yamashita, M. Matsuoka, K. Tsuji, Y. Shioya and M. Anpo, J. Phys. Chem. 100, 397 (1996).CrossRefGoogle Scholar
  13. 13.
    W. Zhang, P. T. Tanev and T. J. Pinnavaia, J. Chem. Soc., Chem. Commun., 979 (1996).Google Scholar
  14. 14.
    B. M. Weckhuysen, R. A. Schoonheydt, J. M. Jehng, I. E. Wachs, S. J. Cho, R. Ryoo and E. Poels, J. Chem. Soc. Faraday Trans. 91, 3245 (1995).CrossRefGoogle Scholar
  15. 15.
    B. M. Weckhuysen, R. A. Schoonheydt, D. E. Mabbs and D. Collison, J. Chem. Soc. Faraday Trans. 92, 2431 (1996).CrossRefGoogle Scholar
  16. 16.
    B. M. Weckhuysen, A. A. Verberckmoes, A. L. Buttiens and R. A. Schoonheydt, J. Phys. Chem. 98, 579 (1994).CrossRefGoogle Scholar
  17. 17.
    M. Anpo, I. Takahashi and Y. Kubokawa, J. Phys. Chem. 86, 1 (1982).CrossRefGoogle Scholar
  18. 18.
    M. F. Hazenkamp and G. Blasse, J. Phys. Chem. 96, 3442 (1992).CrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversitySakai, OsakaJapan

Personalised recommendations