Research on Chemical Intermediates

, Volume 29, Issue 7–9, pp 761–772 | Cite as

Effects of binder, coking and regeneration on acid properties of H-mordenite during TDP reaction

  • Wen-Hua Chen
  • Shing-Jong Huang
  • Chiun-Shen Lai
  • Tseng-Chang Tsai
  • Huang-Kuei Lee
  • Shang-Bin Liu
Full Papers

Abstract

The effects of binder, coking and regeneration on the acid properties of H-mordenite zeolite during toluene disproportionation reaction (TDP) have been investigated by solid-state 31P-MAS-NMR of various adsorbed phosphorous probe molecules in conjunction with elemental analysis by ICP-MS technique. A series of fresh, spent and regenerated mordenite-based commercial catalysts were examined and the results were also compared with binder-free H-mordenite zeolite and unformulated γ-alumina binder. It is found that parent H-mordenite zeolite possessed only Brønsted acidity, which is responsible for the observed catalytic activity. In contrast, the γ-Al2O3 binder exhibited only Lewis acidity and plays a minor role during the catalytic reaction. While the amount of strong Brønsted acid sites decreased rapidly during initial coking, it reached a plateau at a total coke content of ca. 7 wt%, corresponding to ca. 80% decrease in total acidity. That the catalyst remained active even under deep coke deposition (>7 wt%) condition indicated catalytic activity may be invoked by subsequent coking taking place on the external surface rather than intracrystalline channels of the zeolite catalyst. Furthermore, upon catalyst regeneration treatment, ca. 75% of the total acidity could be effectively recovered.

Keywords

Zeolite mordenite binder coking acidity solid-state NMR TDP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. C. Tsai, S. B. Liu and I. Wang, Appl. Catal. A 181, 355 (1999).CrossRefGoogle Scholar
  2. 2.
    Y. Y. Li, S. P. Perera, B. D. Crittenden and J. Bridgwater, Powder Technol. 116, 85 (2000).CrossRefGoogle Scholar
  3. 3.
    M. Raimondo, G. Perez, A. de Stefanis, A. A. G. Tomlinson and O. Ursini, Appl. Catal. 164, 119 (1997).CrossRefGoogle Scholar
  4. 4.
    L. D. Rollmann and D. E. Walsh, J. Catal. 56, 139 (1979).CrossRefGoogle Scholar
  5. 5.
    W. H. Chen, S. J. Jong, A. R. Pradhan, T. Y. Lee, I. Wang, T. C. Tsai and S. B. Liu, J. Chin. Chem. Soc. 43, 305 (1996).Google Scholar
  6. 6.
    A. R. Pradhan, J. F. Wu, S. J. Jong, W. H. Chen, T. C. Tsai and S. B. Liu, Appl. Catal. A 159, 187 (1997).CrossRefGoogle Scholar
  7. 7.
    P. Canizares, A. Duran, F. Dorado and M. Carmona, Appl. Clay Sci. 16, 273 (2000).CrossRefGoogle Scholar
  8. 8.
    V. R. Choudhary, P. Devadas, A. K. Kinage and M. Guisnet, Appl. Catal. 162, 223 (1997).CrossRefGoogle Scholar
  9. 9.
    M. Misk, G. Joly, P. Magnoux, M. Guisnet and S. Jullian, Micropor. Mesopor. Mater. 40, 197 (2000).CrossRefGoogle Scholar
  10. 10.
    J. W. Ward, ACS Monogr. 171, 118 (1976).Google Scholar
  11. 11.
    J. H. C. van Hooff and J. W. Roelofsen, Stud. Surf. Sci. Catal., 58, 241 (1991).CrossRefGoogle Scholar
  12. 12.
    L. M. Kustov, Top. Catal. 4, 131 (1997).CrossRefGoogle Scholar
  13. 13.
    H. Pfeifer, D. Freude and M. Hunger, Zeolites 5, 274 (1985).CrossRefGoogle Scholar
  14. 14.
    M. Hunger, Catal. Rev.-Sci. Eng. 39, 345 (1997).CrossRefGoogle Scholar
  15. 15.
    Q. Zhao, W. H. Chen, S. J. Huang, Y. C. Wu, H. K. Lee and S. B. Liu, J. Phys. Chem. B 106, 4462 (2002).CrossRefGoogle Scholar
  16. 16.
    V. Gruver, A. Panov and J. J. Fripiat, Langmuir 12, 2505 (1996).CrossRefGoogle Scholar
  17. 17.
    L. Baltusis, J. S. Frye and G. E. Maciel, J. Am. Chem. Soc. 108, 7119 (1986).CrossRefGoogle Scholar
  18. 18.
    L. Baltusis, J. S. Frye and G. E. Maciel, J. Am. Chem. Soc. 109, 40 (1987).CrossRefGoogle Scholar
  19. 19.
    J. H. Lunsford, W. P. Rothwell and W. Shen, J. Am. Chem. Soc. 107, 1540 (1985).CrossRefGoogle Scholar
  20. 20.
    J. H. Lunsford, Top. Catal. 4, 91 (1997).CrossRefGoogle Scholar
  21. 21.
    B. Zhao, H. Pan and J. H. Lunsford, Langmuir 15, 2761 (1999).CrossRefGoogle Scholar
  22. 22.
    B. Hu and I. D. Gay, Langmuir 15, 477 (1999).CrossRefGoogle Scholar
  23. 23.
    W. H. Chen, T. C. Tsai, S. J. Jong, Q. Zhao, C. T. Tsai, I. Wang, H. K. Lee and S. B. Liu, J. Mol. Catal. A 181, 41 (2002).CrossRefGoogle Scholar
  24. 24.
    E. F. Rakiewicz, A. W. Peters, R. F. Wormsbecher, K. J. Sutovich and K. T. Mueller, J. Phys. Chem. B 102, 2890 (1998).CrossRefGoogle Scholar
  25. 25.
    J. P. Osegovic and R. S. Drago, J. Phys. Chem. B 104, 147 (2000).CrossRefGoogle Scholar
  26. 26.
    G. E. Maciel and P. D. Ellis, in: NMR Techniques in Catalysis, A. T. Bell and A. Pines (Eds), p. 231. Marcel Dekker, New York, NY (1994).Google Scholar
  27. 27.
    L. M. Engelhardt, C. L. Raston, C. R. Whitaker and A. H. White, A. H. Aust. J. Chem. 39, 2151 (1986).CrossRefGoogle Scholar
  28. 28.
    C. E. Webster, R. S. Drago and M. C. Zerner, J. Am. Chem. Soc. 120, 5509 (1998).CrossRefGoogle Scholar
  29. 29.
    T. H. Ballinger and J. T. Yates, Langmuir 7, 3041 (1991).CrossRefGoogle Scholar
  30. 30.
    H. M. Kao, C. Y. Yu and M. C. Yeh, Micropor. Mesopor. Mater. 53, 1 (2002).Google Scholar
  31. 31.
    S. J. Jong, A. R. Pradhan, J. F. Wu, T. C. Tsai and S. B. Liu, J. Catal. 174, 210 (1998).CrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Wen-Hua Chen
    • 1
  • Shing-Jong Huang
    • 1
  • Chiun-Shen Lai
    • 1
    • 2
  • Tseng-Chang Tsai
    • 3
  • Huang-Kuei Lee
    • 2
  • Shang-Bin Liu
    • 1
  1. 1.Institute of Atomic and Molecular SciencesAcademia SinicaTaipeiTaiwan, R.O.C.
  2. 2.Institute of Materials Science and ManufacturingChinese Culture UniversityTaipeiTaiwan, R.O.C.
  3. 3.Department of Applied ChemistryNational University of KaohsiungKaohsiungTaiwan, R.O.C.

Personalised recommendations