Research on Chemical Intermediates

, Volume 29, Issue 6, pp 589–607 | Cite as

Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in combination with 35S experiments

  • Franck Dumeignil
  • Jean-Francois Paul
  • Eika W. Qian
  • Atsushi Ishihara
  • Edmond Payen
  • Toshiaki Kabe
Article

Abstract

The first part of this paper is a short review of the 35S radioactive tracer methods developed in recent years. Then, the experimental results obtained so far on Mo/Al2O3 catalysts are compared with computer simulation results recently claimed in order to elucidate the coordinatively unsaturated site (CUS) creation/replenishment/ regeneration mechanism over MoS2 crystallites. The computer simulations allowed us to pre-select thermodynamically acceptable mechanisms among a set of suggested ones. Then, by comparison of the calculated activation energies with the 35S experiments results we could further validate the most probable mechanism. This mechanism involved the dissociative adsorption of an H2 molecule on the metallic edge of a MoS2 crystallite surface with further creation of a CUS by release of one H2S molecule in the gas phase. Both laboratory and computer simulated experiments permitted to calculate the activation energy for the H2S liberation reaction. In both cases, this energy was about 10- 12 kcal/mol, confirming the accuracy of the proposed mechanism. Moreover, the calculated activation energy of the rate-limiting step for the creation of one CUS by the proposed mechanism was about 23 kcal/mol, which was also in good agreement with the experimental activation energy of the dibenzothiophene (DBT) hydrodesulphurisation (HDS) reaction (typically about 20- 22 kcal/mol). This correlation indicated that the DBT HDS reaction rate might be intrinsically governed by the CUS formation/replenishment process, i.e. that the vacancy formation process is a crucial parameter in the global HDS reaction mechanism. Nevertheless, in the case of the 4,6-dimethyl DBT (4,6-DMDBT) HDS reaction, the experimental activation energy is higher (approx. 30 kcal/mol), confirming that external parameters induced by the 4,6-DMDBT-specific properties themselves are likely to play an important role in the reaction process, in addition to the ones intrinsic to the catalytic phase.

HYDRODESULPHURISATION MO-AL2O3 MOS2 ACTIVATION ENERGY 35S TRACER EXPERIMENTS COMPUTER SIMULATIONS H2S LIBERATION. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    European Directive 98/70/CE (1998).Google Scholar
  2. 2.
    G. A. Tsigdinos, Top. Curr. Chem. 75, 65 (1978).Google Scholar
  3. 3.
    A. Wanbeke, L. Jalowiecki, S. Kasztelan, J. Grimblot and J.-P. Bonnelle, J. Catal. 109, 320 (1988).Google Scholar
  4. 4.
    S. Kaztelan, H. Toulhoat, J. Grimblot and J.-P. Bonnelle, Appl. Catal. 13, 127 (1994).Google Scholar
  5. 5.
    S. Kaztelan, H. Toulhoat, J. Grimblot and J.-P. Bonnelle, C. R. Acad. Sci. 299 (II), 289 (1984).Google Scholar
  6. 6.
    C. Mauchaussé, PhD Thesis, Lyon (1988).Google Scholar
  7. 7.
    S. Srinivasan, A. K. Datye and C. H. F. Peden, J. Catal. 137, 513 (1992).Google Scholar
  8. 8.
    T. Shido and R. Prins, J. Phys. Chem. B 102, 8426 (1998).Google Scholar
  9. 9.
    G. Plazenet, S. Cristol, J. F. Paul, E. Payen and J. Lynch, Phys. Chem. Chem. Phys. 3, 246 (2001).Google Scholar
  10. 10.
    P. Faye, E. Payen and D. Bougeard, J. Chem. Soc., Faraday Trans. 92, 2437 (1996).Google Scholar
  11. 11.
    C. Wivel, B. S. Clausen, R. Candia, S. Morup and H. Topsøe, J. Catal. 87, 497 (1984).Google Scholar
  12. 12.
    R. Candia, N. Y. Topsøe, B. S. Clausen, C. Wivel, R. Nevald, S. Morup and H. Topsøe, in: Proc. Inter. Conf. Chem. Uses Molybdenum, 4th Golden Col. (1982).Google Scholar
  13. 13.
    R. Candia, O. Sorensen, J. Villadsen, N. Y. Topsøe, B. S. Clausen and H. Topsøe, Bull. Soc. Chim. Belg. 93, 763 (1984).Google Scholar
  14. 14.
    C. Wivel, R. Candia, B. S. Clausen, S. Morup and H. Topsøe, J. Catal. 68, 453 (1981).Google Scholar
  15. 15.
    R. Candia, B. S. Clausen and H. Topsøe, Bull. Soc. Chim. Belg. 90, 1225 (1981).Google Scholar
  16. 16.
    H. Topsøe, B. S. Clausen, R. Candia, C. Wivel and S. Morup, J. Catal. 68, 433 (1981).Google Scholar
  17. 17.
    B. S. Clausen, B. Lengeler, R. Candia, J. Als-Nielsen and H. Topsøe, Bull. Soc. Chim. Belg. 90, 1249 (1981).Google Scholar
  18. 18.
    R. Candia, B. S. Clausen and H. Topsøe, J. Catal. 77, 564 (1982).Google Scholar
  19. 19.
    I. Alstrup, I. Chorkendorff, R. Candia, B. S. Clausen and H. Topsøe, J. Catal. 77, 397 (1982).Google Scholar
  20. 20.
    N. Y. Topsøe and H. Topsøe, J. Catal. 84, 386 (1983).Google Scholar
  21. 21.
    R. Candia, B. S. Clausen, J. Bartholdy, N. Y. Topsøe, B. Lengeler and H. Topsøe, in: 8th Int. Cong. On Catalysis, Berlin (1984).Google Scholar
  22. 22.
    N. Y. Topsøe, H. Topsøe, O. Sorensen, B. S. Clausen and R. Candia, Bull. Soc. Chim. Belg. 93, 783 (1984).Google Scholar
  23. 23.
    O. Sorensen, B. S. Clausen, R. Candia and H. Topsøe, Appl. Catal. 13, 363 (1985).Google Scholar
  24. 24.
    H. Topsøe, B. S. Clausen, Appl. Catal. 25, 273 (1986).Google Scholar
  25. 25.
    B. Scheffer, E. M. van Oers, P. Arnoldy, V. H. J. de Beer and J. A. Moulijn, Appl. Catal. 25, 303 (1986).Google Scholar
  26. 26.
    J. A. R. van Veen, E. Gerkema, A. M. van der Kraan and A. Knoester, J. Chem. Soc. Chem. Commun., 1684 (1987).Google Scholar
  27. 27.
    A. M. van der Kraan, E. Boellaard and M. W. J. Crajé, Nucl. Instrum. Methods Phys. Res. B 76, 6 (1993).Google Scholar
  28. 28.
    M. W. J. Crajé, V. H. J. de Beer, J. A. R. van Veen and A. M. van der Kraan, J. Catal. 143, 601 (1993).Google Scholar
  29. 29.
    J. L. Brito and J. Laine, J. Catal. 139, 540 (1993).Google Scholar
  30. 30.
    W. Niemann, B. S. Clausen and H. Topsøe, Catal. Lett. 4, 355 (1990).Google Scholar
  31. 31.
    S. M. A. M. Bouwens, J. A. R. van Veen, D. C. Koningsberger, V. H. J. de Beer and R. Prins, J. Phys. Chem. 95, 123 (1991).Google Scholar
  32. 32.
    S. P. A. Louwers and R. Prins, J. Catal. 133, 94 (1992).Google Scholar
  33. 33.
    S. P. A. Louwers and R. Prins, in: Proc. 7th Int. Conf. X-Ray Absorption Fine Structure, Kobe, Japan (1992).Google Scholar
  34. 34.
    S. P. A. Louwers and R. Prins, J. Appl. Phys. 2 (Suppl. 32(2)), 457 (1993).Google Scholar
  35. 35.
    S. P. A. Louwers and R. Prins, J. Catal. 139, 525 (1993).Google Scholar
  36. 36.
    S. M. A. M. Bouwens, F. B.M. van Zon, M. P. van Dijk, A. M. van der Kraan, V. H. J. de Beer, J. A. R. van Veen and D. C. Koningsberger, J. Catal. 146, 375 (1994).Google Scholar
  37. 37.
    S. Houssenbay, S. Kasztelan, H. Toulhoat, J.-P. Bonnelle and J. Grimblot, J. Phys. Chem. 93, 7176 (1989).Google Scholar
  38. 38.
    W. Qian, A. Ishihara, S. Ogawa and T. Kabe, J. Phys. Chem. 98, 907 (1994).Google Scholar
  39. 39.
    T. Kabe and A. Ishihara, in: Regional Symposium on Petrochemical and Environmental Technology, Bangkok, Thailand (1993).Google Scholar
  40. 40.
    T. Kabe, W. Qian and A. Ishihara, Catal. Today 39, 3 (1994).Google Scholar
  41. 41.
    T. Kabe, W. Qian, S. Ogawa and A. Ishihara, J. Catal. 143, 239 (1993).Google Scholar
  42. 42.
    T. Kabe, W. Qian and A. Ishihara, J. Catal. 149, 171 (1994).Google Scholar
  43. 43.
    W. Qian, Q. Zang, Y. Okoshi, A. Ishihara and T. Kabe, J. Soc. Faraday Trans. 93, 1821 (1997).Google Scholar
  44. 44.
    W. Qian, A. Ishihara, Y. Okoshi, W. Nakakami, M. Godo and T. Kabe, J. Soc. Faraday Trans. 93, 4395 (1997).Google Scholar
  45. 45.
    T. Kabe, W. Qian and A. Ishihara, J. Phys. Chem. 98, 912 (1993).Google Scholar
  46. 46.
    T. Kabe, W. Qian and W. Wang, Catal. Today 29, 197 (1996).Google Scholar
  47. 47.
    W. Qian, A. Ishihara, G. Wang, T. Tsuzuki, M. Godo and T. Kabe, J. Catal. 170, 286 (1997).Google Scholar
  48. 48.
    T. Kabe, A. Ishihara, W. Qian, S. Ogawa and H. Saluno, in: New Aspects of Spillover Effect in Catalysis, T. Inui et al. (Eds), p. 341 (1993).Google Scholar
  49. 49.
    T. Kabe, Trans. Mater. Res. Soc. Jpn. 15A, 57 (1993).Google Scholar
  50. 50.
    T. Kabe, A. Ishihara and W. Qian, Hyomen 34, 46 (1996).Google Scholar
  51. 51.
    T. Kabe, W. Qian, W. Wang, A. Ishihara and Q. Zhang, in: 5th Japan-China Joint Seminar on Research and Technology for Petroleum Refining, Jiujiang, China (1994).Google Scholar
  52. 52.
    T. Kabe, W. Qian, W. Wang and A. Ishihara, in: 2nd Japan-EC Joint Workshop on the Frontiers of Catalyst Science and Technology for Energy, Environment and Risks Prevention, Lyon-Villeurbanne, France (1995).Google Scholar
  53. 53.
    T. Kabe and A. Ishihara, in: Energy Conversion and Utilization with Ef. ciency, Subarea B: Conversion of Various Resources to Energy, B02-04 (1993).Google Scholar
  54. 54.
    A. Ishihara, M. Yamaguchi, H. Godo, W. Qian, M. Godo, T. Kabe, Chem. Lett., 743 (1996)Google Scholar
  55. 55.
    A. Ishihara, M. Yamaguchi, H. Godo, W. Qian, M. Godo, T. Kabe, Sekiyu Gakkaishi 41, 51 (1998).Google Scholar
  56. 56.
    T. Kabe, W. Qian, A. Funato, Y. Okoshi and A. Ishihara, Phys. Chem. Chem. Phys. 1, 921 (1999).Google Scholar
  57. 57.
    T. Kabe, A. Ishihara, W. Qian and M. Godo, Catal. Today 45, 285 (1998).Google Scholar
  58. 58.
    W. Qian, Y. Yoda, Y. Hirai, A. Ishihara and T. Kabe, Appl. Catal. A: General 184, 81 (1999).Google Scholar
  59. 59.
    T. Kabe, A. Ishihara and W. Qian, Catal. Surv. Jpn. 3, 17 (1999).Google Scholar
  60. 60.
    W. Qian, A. Ishihara, Y. Aoyama and T. Kabe, Appl. Catal. A: General 196, 103, (2000).Google Scholar
  61. 61.
    W. Qian, T. Kawano, A. Funato, A. Ishihara and T. Kabe, Phys. Chem. Chem. Phys. 3, 261 (2001).Google Scholar
  62. 62.
    D. Wang, W. Qian, A. Ishihara and T. Kabe, J. Catal. 203, 322 (2001).Google Scholar
  63. 63.
    F. Dumeignil, H. Amano, D. Wang, W. Qian, A. Ishihara and T. Kabe, Appl. Catal. A: Gen. 249, 255 (2003).Google Scholar
  64. 64.
    V. M. Kogan, N. N. Rozhdestvenskaya and I. K. Korshevets, Appl. Catal. A: General 234, 20 (2002).Google Scholar
  65. 65.
    S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clémendot and F. Hutschka, J. Phys. Chem. B 104, 11220 (2000).Google Scholar
  66. 66.
    P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan and H. Toulhoat, J. Catal. 189, 129 (2000).Google Scholar
  67. 67.
    S. Crystol, J. F. Paul, E. Payen, D. Bougeard, S. Clémendot and F. Hutschka, J. Phys. Chem. B 106, 5659 (2002).Google Scholar
  68. 68.
    H. Schweiger, P. Raybaud, G. Kresse and H. Toulhoat, J. Catal. 207, 76 (2002).Google Scholar
  69. 69.
    P. Raybaud, PhD Thesis, Université Pierre et Marie Curie (Paris IV) (1998).Google Scholar
  70. 70.
    S. Cristol, PhD Thesis, Université de Provence (Aix-Marseille I) (2000).Google Scholar
  71. 71.
    H. Gilman and A. L. Jacoby, J. Org. Chem. 4, 108 (1939).Google Scholar
  72. 72.
    Y. Kobayashi and D. V. Maudsley, Biological Applications of Liquid Scintillation Counting. Academic Press, New York, NY (1974).Google Scholar
  73. 73.
    D. L. Horrocks, Applications Liquid Scintillation Counting. Academic Press, New York, NY (1974).Google Scholar
  74. 74.
    M. Crook, in: Liquid Scintillation Counting, Volume 4, P. Johnson (Ed.). Heyden, London (1977).Google Scholar
  75. 75.
    J.-F. Paul. and E. Payen, J. Phys. Chem. B 107, 4057 (2003)Google Scholar
  76. 76.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).Google Scholar
  77. 77.
    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).Google Scholar
  78. 78.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).Google Scholar
  79. 79.
    G. Kresse and J. Furthmüller, J. Comp. Mater. Sci. 6, 15 (1996).Google Scholar
  80. 80.
    http://cms.mpi.univie.ac.at/vasp/Google Scholar
  81. 81.
    J. P. Perdew and Y. Wang, Phys Rev. B 45, 13224 (1992).Google Scholar
  82. 82.
    G. Henkelman, B. P. Uberuaga and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).Google Scholar
  83. 83.
    Q. Zhang, W. Qian, S. Oshima, A. Ishihara and T. Kabe, Sekiyu Gakkaishi 40, 408 (1997).Google Scholar

Copyright information

© VSP 2003 2003

Authors and Affiliations

  • Franck Dumeignil
  • Jean-Francois Paul
  • Eika W. Qian
  • Atsushi Ishihara
  • Edmond Payen
  • Toshiaki Kabe

There are no affiliations available

Personalised recommendations