Skip to main content

Advertisement

Log in

Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in combination with 35S experiments

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The first part of this paper is a short review of the 35S radioactive tracer methods developed in recent years. Then, the experimental results obtained so far on Mo/Al2O3 catalysts are compared with computer simulation results recently claimed in order to elucidate the coordinatively unsaturated site (CUS) creation/replenishment/ regeneration mechanism over MoS2 crystallites. The computer simulations allowed us to pre-select thermodynamically acceptable mechanisms among a set of suggested ones. Then, by comparison of the calculated activation energies with the 35S experiments results we could further validate the most probable mechanism. This mechanism involved the dissociative adsorption of an H2 molecule on the metallic edge of a MoS2 crystallite surface with further creation of a CUS by release of one H2S molecule in the gas phase. Both laboratory and computer simulated experiments permitted to calculate the activation energy for the H2S liberation reaction. In both cases, this energy was about 10- 12 kcal/mol, confirming the accuracy of the proposed mechanism. Moreover, the calculated activation energy of the rate-limiting step for the creation of one CUS by the proposed mechanism was about 23 kcal/mol, which was also in good agreement with the experimental activation energy of the dibenzothiophene (DBT) hydrodesulphurisation (HDS) reaction (typically about 20- 22 kcal/mol). This correlation indicated that the DBT HDS reaction rate might be intrinsically governed by the CUS formation/replenishment process, i.e. that the vacancy formation process is a crucial parameter in the global HDS reaction mechanism. Nevertheless, in the case of the 4,6-dimethyl DBT (4,6-DMDBT) HDS reaction, the experimental activation energy is higher (approx. 30 kcal/mol), confirming that external parameters induced by the 4,6-DMDBT-specific properties themselves are likely to play an important role in the reaction process, in addition to the ones intrinsic to the catalytic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. European Directive 98/70/CE (1998).

  2. G. A. Tsigdinos, Top. Curr. Chem. 75, 65 (1978).

    Google Scholar 

  3. A. Wanbeke, L. Jalowiecki, S. Kasztelan, J. Grimblot and J.-P. Bonnelle, J. Catal. 109, 320 (1988).

    Google Scholar 

  4. S. Kaztelan, H. Toulhoat, J. Grimblot and J.-P. Bonnelle, Appl. Catal. 13, 127 (1994).

    Google Scholar 

  5. S. Kaztelan, H. Toulhoat, J. Grimblot and J.-P. Bonnelle, C. R. Acad. Sci. 299 (II), 289 (1984).

    Google Scholar 

  6. C. Mauchaussé, PhD Thesis, Lyon (1988).

  7. S. Srinivasan, A. K. Datye and C. H. F. Peden, J. Catal. 137, 513 (1992).

    Google Scholar 

  8. T. Shido and R. Prins, J. Phys. Chem. B 102, 8426 (1998).

    Google Scholar 

  9. G. Plazenet, S. Cristol, J. F. Paul, E. Payen and J. Lynch, Phys. Chem. Chem. Phys. 3, 246 (2001).

    Google Scholar 

  10. P. Faye, E. Payen and D. Bougeard, J. Chem. Soc., Faraday Trans. 92, 2437 (1996).

    Google Scholar 

  11. C. Wivel, B. S. Clausen, R. Candia, S. Morup and H. Topsøe, J. Catal. 87, 497 (1984).

    Google Scholar 

  12. R. Candia, N. Y. Topsøe, B. S. Clausen, C. Wivel, R. Nevald, S. Morup and H. Topsøe, in: Proc. Inter. Conf. Chem. Uses Molybdenum, 4th Golden Col. (1982).

  13. R. Candia, O. Sorensen, J. Villadsen, N. Y. Topsøe, B. S. Clausen and H. Topsøe, Bull. Soc. Chim. Belg. 93, 763 (1984).

    Google Scholar 

  14. C. Wivel, R. Candia, B. S. Clausen, S. Morup and H. Topsøe, J. Catal. 68, 453 (1981).

    Google Scholar 

  15. R. Candia, B. S. Clausen and H. Topsøe, Bull. Soc. Chim. Belg. 90, 1225 (1981).

    Google Scholar 

  16. H. Topsøe, B. S. Clausen, R. Candia, C. Wivel and S. Morup, J. Catal. 68, 433 (1981).

    Google Scholar 

  17. B. S. Clausen, B. Lengeler, R. Candia, J. Als-Nielsen and H. Topsøe, Bull. Soc. Chim. Belg. 90, 1249 (1981).

    Google Scholar 

  18. R. Candia, B. S. Clausen and H. Topsøe, J. Catal. 77, 564 (1982).

    Google Scholar 

  19. I. Alstrup, I. Chorkendorff, R. Candia, B. S. Clausen and H. Topsøe, J. Catal. 77, 397 (1982).

    Google Scholar 

  20. N. Y. Topsøe and H. Topsøe, J. Catal. 84, 386 (1983).

    Google Scholar 

  21. R. Candia, B. S. Clausen, J. Bartholdy, N. Y. Topsøe, B. Lengeler and H. Topsøe, in: 8th Int. Cong. On Catalysis, Berlin (1984).

  22. N. Y. Topsøe, H. Topsøe, O. Sorensen, B. S. Clausen and R. Candia, Bull. Soc. Chim. Belg. 93, 783 (1984).

    Google Scholar 

  23. O. Sorensen, B. S. Clausen, R. Candia and H. Topsøe, Appl. Catal. 13, 363 (1985).

    Google Scholar 

  24. H. Topsøe, B. S. Clausen, Appl. Catal. 25, 273 (1986).

    Google Scholar 

  25. B. Scheffer, E. M. van Oers, P. Arnoldy, V. H. J. de Beer and J. A. Moulijn, Appl. Catal. 25, 303 (1986).

    Google Scholar 

  26. J. A. R. van Veen, E. Gerkema, A. M. van der Kraan and A. Knoester, J. Chem. Soc. Chem. Commun., 1684 (1987).

  27. A. M. van der Kraan, E. Boellaard and M. W. J. Crajé, Nucl. Instrum. Methods Phys. Res. B 76, 6 (1993).

    Google Scholar 

  28. M. W. J. Crajé, V. H. J. de Beer, J. A. R. van Veen and A. M. van der Kraan, J. Catal. 143, 601 (1993).

    Google Scholar 

  29. J. L. Brito and J. Laine, J. Catal. 139, 540 (1993).

    Google Scholar 

  30. W. Niemann, B. S. Clausen and H. Topsøe, Catal. Lett. 4, 355 (1990).

    Google Scholar 

  31. S. M. A. M. Bouwens, J. A. R. van Veen, D. C. Koningsberger, V. H. J. de Beer and R. Prins, J. Phys. Chem. 95, 123 (1991).

    Google Scholar 

  32. S. P. A. Louwers and R. Prins, J. Catal. 133, 94 (1992).

    Google Scholar 

  33. S. P. A. Louwers and R. Prins, in: Proc. 7th Int. Conf. X-Ray Absorption Fine Structure, Kobe, Japan (1992).

  34. S. P. A. Louwers and R. Prins, J. Appl. Phys. 2 (Suppl. 32(2)), 457 (1993).

    Google Scholar 

  35. S. P. A. Louwers and R. Prins, J. Catal. 139, 525 (1993).

    Google Scholar 

  36. S. M. A. M. Bouwens, F. B.M. van Zon, M. P. van Dijk, A. M. van der Kraan, V. H. J. de Beer, J. A. R. van Veen and D. C. Koningsberger, J. Catal. 146, 375 (1994).

    Google Scholar 

  37. S. Houssenbay, S. Kasztelan, H. Toulhoat, J.-P. Bonnelle and J. Grimblot, J. Phys. Chem. 93, 7176 (1989).

    Google Scholar 

  38. W. Qian, A. Ishihara, S. Ogawa and T. Kabe, J. Phys. Chem. 98, 907 (1994).

    Google Scholar 

  39. T. Kabe and A. Ishihara, in: Regional Symposium on Petrochemical and Environmental Technology, Bangkok, Thailand (1993).

  40. T. Kabe, W. Qian and A. Ishihara, Catal. Today 39, 3 (1994).

    Google Scholar 

  41. T. Kabe, W. Qian, S. Ogawa and A. Ishihara, J. Catal. 143, 239 (1993).

    Google Scholar 

  42. T. Kabe, W. Qian and A. Ishihara, J. Catal. 149, 171 (1994).

    Google Scholar 

  43. W. Qian, Q. Zang, Y. Okoshi, A. Ishihara and T. Kabe, J. Soc. Faraday Trans. 93, 1821 (1997).

    Google Scholar 

  44. W. Qian, A. Ishihara, Y. Okoshi, W. Nakakami, M. Godo and T. Kabe, J. Soc. Faraday Trans. 93, 4395 (1997).

    Google Scholar 

  45. T. Kabe, W. Qian and A. Ishihara, J. Phys. Chem. 98, 912 (1993).

    Google Scholar 

  46. T. Kabe, W. Qian and W. Wang, Catal. Today 29, 197 (1996).

    Google Scholar 

  47. W. Qian, A. Ishihara, G. Wang, T. Tsuzuki, M. Godo and T. Kabe, J. Catal. 170, 286 (1997).

    Google Scholar 

  48. T. Kabe, A. Ishihara, W. Qian, S. Ogawa and H. Saluno, in: New Aspects of Spillover Effect in Catalysis, T. Inui et al. (Eds), p. 341 (1993).

  49. T. Kabe, Trans. Mater. Res. Soc. Jpn. 15A, 57 (1993).

    Google Scholar 

  50. T. Kabe, A. Ishihara and W. Qian, Hyomen 34, 46 (1996).

    Google Scholar 

  51. T. Kabe, W. Qian, W. Wang, A. Ishihara and Q. Zhang, in: 5th Japan-China Joint Seminar on Research and Technology for Petroleum Refining, Jiujiang, China (1994).

    Google Scholar 

  52. T. Kabe, W. Qian, W. Wang and A. Ishihara, in: 2nd Japan-EC Joint Workshop on the Frontiers of Catalyst Science and Technology for Energy, Environment and Risks Prevention, Lyon-Villeurbanne, France (1995).

    Google Scholar 

  53. T. Kabe and A. Ishihara, in: Energy Conversion and Utilization with Ef. ciency, Subarea B: Conversion of Various Resources to Energy, B02-04 (1993).

  54. A. Ishihara, M. Yamaguchi, H. Godo, W. Qian, M. Godo, T. Kabe, Chem. Lett., 743 (1996)

  55. A. Ishihara, M. Yamaguchi, H. Godo, W. Qian, M. Godo, T. Kabe, Sekiyu Gakkaishi 41, 51 (1998).

    Google Scholar 

  56. T. Kabe, W. Qian, A. Funato, Y. Okoshi and A. Ishihara, Phys. Chem. Chem. Phys. 1, 921 (1999).

    Google Scholar 

  57. T. Kabe, A. Ishihara, W. Qian and M. Godo, Catal. Today 45, 285 (1998).

    Google Scholar 

  58. W. Qian, Y. Yoda, Y. Hirai, A. Ishihara and T. Kabe, Appl. Catal. A: General 184, 81 (1999).

    Google Scholar 

  59. T. Kabe, A. Ishihara and W. Qian, Catal. Surv. Jpn. 3, 17 (1999).

    Google Scholar 

  60. W. Qian, A. Ishihara, Y. Aoyama and T. Kabe, Appl. Catal. A: General 196, 103, (2000).

    Google Scholar 

  61. W. Qian, T. Kawano, A. Funato, A. Ishihara and T. Kabe, Phys. Chem. Chem. Phys. 3, 261 (2001).

    Google Scholar 

  62. D. Wang, W. Qian, A. Ishihara and T. Kabe, J. Catal. 203, 322 (2001).

    Google Scholar 

  63. F. Dumeignil, H. Amano, D. Wang, W. Qian, A. Ishihara and T. Kabe, Appl. Catal. A: Gen. 249, 255 (2003).

    Google Scholar 

  64. V. M. Kogan, N. N. Rozhdestvenskaya and I. K. Korshevets, Appl. Catal. A: General 234, 20 (2002).

    Google Scholar 

  65. S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clémendot and F. Hutschka, J. Phys. Chem. B 104, 11220 (2000).

    Google Scholar 

  66. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan and H. Toulhoat, J. Catal. 189, 129 (2000).

    Google Scholar 

  67. S. Crystol, J. F. Paul, E. Payen, D. Bougeard, S. Clémendot and F. Hutschka, J. Phys. Chem. B 106, 5659 (2002).

    Google Scholar 

  68. H. Schweiger, P. Raybaud, G. Kresse and H. Toulhoat, J. Catal. 207, 76 (2002).

    Google Scholar 

  69. P. Raybaud, PhD Thesis, Université Pierre et Marie Curie (Paris IV) (1998).

  70. S. Cristol, PhD Thesis, Université de Provence (Aix-Marseille I) (2000).

  71. H. Gilman and A. L. Jacoby, J. Org. Chem. 4, 108 (1939).

    Google Scholar 

  72. Y. Kobayashi and D. V. Maudsley, Biological Applications of Liquid Scintillation Counting. Academic Press, New York, NY (1974).

    Google Scholar 

  73. D. L. Horrocks, Applications Liquid Scintillation Counting. Academic Press, New York, NY (1974).

    Google Scholar 

  74. M. Crook, in: Liquid Scintillation Counting, Volume 4, P. Johnson (Ed.). Heyden, London (1977).

    Google Scholar 

  75. J.-F. Paul. and E. Payen, J. Phys. Chem. B 107, 4057 (2003)

    Google Scholar 

  76. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Google Scholar 

  77. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Google Scholar 

  78. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  79. G. Kresse and J. Furthmüller, J. Comp. Mater. Sci. 6, 15 (1996).

    Google Scholar 

  80. http://cms.mpi.univie.ac.at/vasp/

  81. J. P. Perdew and Y. Wang, Phys Rev. B 45, 13224 (1992).

    Google Scholar 

  82. G. Henkelman, B. P. Uberuaga and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).

    Google Scholar 

  83. Q. Zhang, W. Qian, S. Oshima, A. Ishihara and T. Kabe, Sekiyu Gakkaishi 40, 408 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumeignil, F., Paul, JF., Qian, E.W. et al. Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in combination with 35S experiments. Research on Chemical Intermediates 29, 589–607 (2003). https://doi.org/10.1163/156856703322539636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856703322539636

Navigation