Research on Chemical Intermediates

, Volume 28, Issue 1, pp 13–24 | Cite as

Application of non-thermal atmospheric pressure ac plasmas to the carbon dioxide reforming of methane

  • Stephanie L. Brock
  • Tomoko Shimojo
  • Steven L. Suib
  • Yuji Hayashi
  • Hiroshige Matsumoto


Methane conversions of 11.9%, yields of hydrogen as high as 23.3% and energy yields of 1.0 mol H2/kWh have been achieved from CO2 reforming of CH4 in non-thermal, atmospheric pressure plasma reactors with Pt coated electrodes. Two reactors have been studied. A novel fan type reactor consisting of a movable rotor and immobile stator produced the highest yields in contrast to a tube type (silent discharge) reactor with a glass dielectric barrier. Conversions, yields of hydrogen and energy yields (expressed as mol H2/kWh) were studied for CO2/CH4 concentrations of 1.1% and 5.0% in He as a function of flow rate and input voltage. Hydrogen yields are observed to increase as the input voltage is increased from 411 V to 911 V and the flow rate is decreased from 100 cc/min to 30 cc/min. Energy yields vary only slightly with input voltage and flow rate. Hydrogen yields show little dependence on CO2/CH4 concentrations, but energy yields are approximately five times greater for the 5.0% mixture than the 1.1% mixture. Selectivities to H2, CO, coke, and low molecular weight hydrocarbons were also evaluated and compared to data obtained without CO2 in the feed. Hydrogen selectivities of nearly 100% were obtained, with small amounts of ethane and propane as the only observed side products and the selectivites were approximately the same whether CO2 was present or absent in the mixture. However, the reaction proceeds much more cleanly when CO2 is present, producing CO. The syngas product has an H2 : CO ratio of 1.5 with the fan type reactor and 0.67 with the tubular reactor. In the absence of CO2, coke is the main carbonaceous product. Under all conditions studied the fan type reactor demonstrated higher methane conversions (up to 11.9%) and selectivities to hydrogen.


Syngas Energy Yield Input Voltage Atmospheric Pressure Plasma Methane Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Azar and H. Rodhe, Science 276, 1818–1819 (1997).Google Scholar
  2. 2.
    J. A. Kleypas, R. W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon and B. N. Opdyke, Science 284, 118–120 (1999).PubMedGoogle Scholar
  3. 3.
    G. Q. Lu and S. Wang, CHEMTECH (January), 37–43 (1999).Google Scholar
  4. 4.
    E. Ruckenstein and Y. H. Hu, J. Catal. 162, 230–238 (1996).Google Scholar
  5. 5.
    A. T. Ashcroft, A. K. Cheetham, M. L. H. Green and P. D. F. Vernon, Nature 352, 225–226 (1991).CrossRefGoogle Scholar
  6. 6.
    V. A. Tsipouriari, A. M. Efstathiou and X. E. Verykios, J. Catal. 161, 31–42 (1996).Google Scholar
  7. 7.
    M. C. J. Bradford and M. A. Vannice, J. Catal. 173, 157–171 (1998).Google Scholar
  8. 8.
    S. M. Stagg, E. Romeo, C. Padro and D. E. Resasco, J. Catal. 178, 137–145 (1998).Google Scholar
  9. 9.
    L. Bromberg, D. R. Cohn, A. Rabinovich, C. O'Brien and S. Hochgreb, Energy and Fuels 12, 11–18 (1998).Google Scholar
  10. 10.
    H. D. Gesser, N. R. Hunter, A. N. Shigapov and V. Januati, Energy and Fuels 8, 1123–1125 (1994).Google Scholar
  11. 11.
    O. Motret, S. Pellerin, M. Nikravech, V. Massereau and J. M. Pouvesle, Plasma Chem. Plasma Proc. 17, 393–407 (1997).Google Scholar
  12. 12.
    H. D. Gesser, N. R. Hunter and D. Probawono, Plasma Chem. Plasma Proc. 18, 241–245 (1998).Google Scholar
  13. 13.
    L. M. Zhou, B. Xue, U. Kogelschatz and B. Eliasson, Energy and Fuels 12, 1191–1199 (1998).Google Scholar
  14. 14.
    D. W. Larkin, T. A. Caldwell, L. L. Lobban and R. G. Mallinson, Energy and Fuels 12, 740–744 (1998).Google Scholar
  15. 15.
    G.-G. Xia, A. Huang, J.-Y. Wang, S. L. Suib, Y. Hayashi and H. Matsumoto, Rev. Sci. Intr. 72, 1383–1390 (2001).Google Scholar
  16. 16.
    A. Huang, G.-G. Xia, J.-Y. Wang, S. L. Suib, Y. Hayashi and H. Matsumoto, J. Catal. 189, 349–359 (2000).Google Scholar
  17. 17.
    S. L. Suib, S. L. Brock, M. Marquez, J. Luo, H. Matsumoto and Y. Hayashi, J. Phys. Chem. B 102, 9661–9666 (1998).Google Scholar
  18. 18.
    J. Luo, S. L. Suib, M. Marquez, Y. Hayashi and H. Matsumoto, J. Phys. Chem. A 102, 7954–7963 (1998).Google Scholar
  19. 19.
    S. L. Brock, T. Shimojo, M. Marquez, C. Marun, S. L. Suib, H. Matsumoto and Y. Hayashi, J. Catal. 184, 123–133 (1999).Google Scholar
  20. 20.
    S. L. Brock, M. Marquez, S. L. Suib, Y. Hayashi and H. Matsumoto, J. Catal. 180, 225–233 (1998).Google Scholar
  21. 21.
    X. Chen, M. Marquez, J. Rozak, C. Marun, J. Luo, S. L. Suib, Y. Hayashi and H. Matsumoto, J. Catal. 178, 372–377 (1998).Google Scholar
  22. 22.
    O. H. Giraldo, W. S. Willis, M. Marquez, S. L. Suib, Y. Hayashi and H. Matsumoto, Chem. Mater. 10, 366–371 (1998).Google Scholar
  23. 23.
    Y. Hayashi, US Patent No. 08/139,907, Fujitsu Ltd., 7/95.Google Scholar
  24. 24.
    Y. Hayashi, H. Ohta and T. Yanobe, US Patent No. 08/278,069, Hokushin Co., Fujitsu Ltd., 8/95.Google Scholar

Copyright information

© VSP 2002 2002

Authors and Affiliations

  • Stephanie L. Brock
  • Tomoko Shimojo
  • Steven L. Suib
  • Yuji Hayashi
  • Hiroshige Matsumoto

There are no affiliations available

Personalised recommendations