Skip to main content

Advertisement

Log in

Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

For photochemical reactions in a quasi collimated beam, derivations are presented that introduce 'rate constants' based on the fluence (UV dose) received within the irradiated solution. These fluence-based 'rate constants' are shown to be fundamental and depend only on the quantum yield and the molar absorption coefficient at the irradiation wavelength. An experimental example is given, where the quantum yield for the photolysis of atrazine is determined to be 0.033. The new concepts are developed further to analyze the Figure-of-Merit Electrical Energy per Order (E EO), and it is shown that the E EO depends on the same fundamental photochemical parameters. An example of the photolysis of N-nitrosodimethylamine (NDMA) is presented, and it is shown that the E EO should decrease (increased electrical energy efficiency) as the radius of the UV reactor increases (increased path length), and should increase as the percent transmittance of the water decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. P. Schwarzenbach, P. M. Gschwend and D. M. Imboden, Environmental Organic Chemistry, Chapter 13. JohnWiley & Sons, Inc., New York (1993).

    Google Scholar 

  2. A. Leifer, The Kinetics of Environmental Aquatic Photochemistry. ACS Professional Reference Book (1988).

  3. R. G. Zepp, Environ. Sci. Technol. 12 (3), 327-329 (1978).

    Google Scholar 

  4. R. G. Zepp, Experimental approaches to environmental photochemistry, in: The Handbook of Environmental Chemistry, O. Hutzinger (Ed.), Vol. 2, Part B. Springer, Berlin (1982).

    Google Scholar 

  5. R. G. Zepp and D. M. Cline, Environ. Sci. Technol. 11, 359-366 (1977).

    Google Scholar 

  6. W. R. Haag and T. Mill, Environ. Toxicol. Chem. 6, 359-369 (1987).

    Google Scholar 

  7. K. Nick, H. F. Schoeler, G. Mark, T. Söylemez, M. S. Akhlaq, H.-P. Schuchmann and C. von Sonntag, J. Water SRT-Aqua 41, 82-87 (1992).

    Google Scholar 

  8. J. R. Bolton, Terms and de. nitions in ultraviolet disinfection, in: Proceedings, Disinfection 2000: Disinfection of Wastes in the New Millennium. New Orleans, LA, Water Environment Federation, 601Wythe St., Alexandria,VA, 22314 (2000).

    Google Scholar 

  9. J. W. Verhoeven, Pure Appl. Chem. 68, 2223-2286 (1996) (available on the Web at http://www.unibas.ch/epa/welcome.html).

    Google Scholar 

  10. J. R. Bolton and R. G. Linden, J. Environ. Engng. (2002) (in press).

  11. H. J. Morowitz, Science 111, 229-230 (1950).

    Google Scholar 

  12. D. P. Hessler, V. Gorenflo and F. H. Frimmel, Acta Hydrochim. Hydrobiol. 21, 209-214 (1993).

    Google Scholar 

  13. D. P. Hessler, V. Gorenflo and F. H. Frimmel, Aqua (London) 42, 8-12 (1993).

    Google Scholar 

  14. F. J. Beltran, G. Ovejero and B. Acedo, Wat. Res. 27, 1013-1021 (1993).

    Google Scholar 

  15. J. R. Bolton, K. G. Bircher, W. Tumas and C. A. Tolman, Pure Appl. Chem. 73 (4), 627-637 (2001).

    Google Scholar 

  16. J. R. Bolton, Wat. Res. 34, 3315-3324 (2000).

    Google Scholar 

  17. L. R. Koller, in: Ultraviolet Radiation, S. S. Ballard (Ed.), 2nd edn, Chapter 6, p. 200. Wiley & Sons, Inc., New York (1965).

    Google Scholar 

  18. C. M. Sharpless, C. I. Chou, A. A. Mo. di and K. G. Linden, N-nitrosodimethylamine removal from drinking water by UV-treatment: a direct comparison of different UV technologies, in: Proceedings of Water Quality and Technology Conference, Nashville, TN (2001).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolton, J.R., Stefan, M.I. Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions. Research on Chemical Intermediates 28, 857–870 (2002). https://doi.org/10.1163/15685670260469474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/15685670260469474

Keywords

Navigation