Advertisement

Research on Chemical Intermediates

, Volume 28, Issue 7–9, pp 741–759 | Cite as

Conformational control of oxidation sites, spin states and orbital occupancy in nickel porphyrins

  • Mark W. Renner
  • Kathleen M. Barkigia
  • Dan Melamed
  • Jean-Paul Gisselbrecht
  • Nora Y. Nelson
  • Kevin M. Smith
  • Jack Fajer
Article

Abstract

Ni(II) porphyrin π cation radicals are known to undergo an internal electronic isomerization to L2Ni(III) cations upon complexation with ligands (L). Additional examples of the Ni(II) to Ni(III) conversion are presented for flexible, 'planar' NiOEP (2,3,7,8,12,13,17,18-octaethylporphyrin) and NiT(Pr)P (5,10,15,20-tetra-n-propylporphyrin) in which the Ni(III) orbital occupancy, dz2 or dx2-y2, is determined by the ligand field strength of the axial ligands (pyridine, imidazole, or cyanide). In contrast to these results, the nonplanar NiOETPP (2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin), which is easily oxidized because of its saddle-shape, yields a complex postulated to be a high spin Ni(II) π cation radical, based on crystallographic and optical data for (imidazole)2NiOETPP+ClO4-, in which the electron of high spin Ni(II) in the dx2-y2 orbital is antiferromagnetically coupled to the unpaired electron of the porphyrin radical leaving one electron in the Ni(II) dz2 orbital, i.e. a pseudo Ni(III). The sterically encumbered, nonplanar NiT(t-Bu)P (5,10,15,20-tetra-tertiary-butylporphyrin) yields Ni(III) complexes when ligated by pyridine, imidazole or cyanide, but in all cases only the Ni(III) dz2 orbital is occupied as evidenced by EPR spectroscopy. This anomalous chemistry is attributed to the fact that the macrocycle of NiT(t-Bu)P is so sterically constrained that it cannot readily expand to accommodate the longer equatorial Ni—N distances required by population of the dx2-y2 orbital in Ni(III) or high spin Ni(II). Further support for this postulate derives from NiD(t-Bu)P (5,10-di-tertiary-butylporphyrin) which is less sterically constrained and in which the Ni(III) dx2-y2 orbital is indeed occupied upon complexation with cyanide. These results thus illustrate the significant effects that the conformations, plasticity or rigidity of Ni porphyrin macrocycles can have on sites of oxidation (metal or porphyrin), spin states (low spin Ni(III) or high spin Ni(II)), and orbital occupancies (dz2 or dx2-y2 in Ni(III)).

Keywords

Cyanide Imidazole Porphyrin High Spin Spin State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Fajer, J. Porphyrins Phthalocyanines 4, 382 (2000).Google Scholar
  2. 2.
    J. A. Shelnutt, X.-Z. Song, J.-G. Ma, S.-L. Jia, W. Jentzen and C. J. Medforth, Chem. Soc. Rev. 27, 31 (1998).Google Scholar
  3. 3.
    M. O. Senge, in: The Porphyrin Handbook, K. M. Kadish, K. M. Smith and R. Guilard (Eds), Vol. 1, p. 239. Academic Press, New York (2000).Google Scholar
  4. 4.
    K. M. Barkigia, L. Chantranupong, K. M. Smith and J. Fajer, J. Am. Chem. Soc. 110, 7566 (1988).Google Scholar
  5. 5.
    K. M. Barkigia, M. W. Renner, L. R. Furenlid, C. J. Medforth, K. M. Smith and J. Fajer, J. Am. Chem. Soc. 115, 3627 (1993).Google Scholar
  6. 6.
    M. O. Senge, T. Ema and K. M. Smith, J. Chem. Soc. Chem. Comm. 733 (1995).Google Scholar
  7. 7.
    M. O. Senge, M. W. Renner, W. W. Kalisch and J. Fajer, J. Chem. Soc. Dalton Trans. 381 (2000).Google Scholar
  8. 8.
    P. Ochsenbein, K. Ayougou, D. Mandon, J. Fischer, R. Weiss, R. N. Austin, K. Jayaraj, A. Gold, J. Terner and J. Fajer, Angew. Chem. Int. Ed. Eng. 33, 348 (1994).Google Scholar
  9. 9.
    K. M. Kadish, E. Van Caemelbecke and G. Royal, in: The Porphyrin Handbook, K. M. Kadish, K. M. Smith and R. Guilard (Eds), Vol. 8, p. 1. Academic Press, New York (2000).Google Scholar
  10. 10.
    H. Ogura, L. Yatsunyk, C. J. Medforth, K. M. Smith, K. M. Barkigia, M. W. Renner, D. Melamed and F. A. Walker, J. Am. Chem. Soc. 123, 6564 (2001).Google Scholar
  11. 11.
    K. M. Barkigia, M. W. Renner and J. Fajer, J. Porphyrins Phthalocyanines 5, 415 (2001).Google Scholar
  12. 12.
    T. Ikeue, Y. Ohgo, T. Yamaguchi, M. Takahashi, M. Takeda and M. Nakamura, Angew. Chem. Int. Ed. 40, 2617 (2001).Google Scholar
  13. 13.
    M. W. Renner, K. M. Barkigia and J. Fajer, Inorg. Chim. Acta 263, 181 (1997).Google Scholar
  14. 14.
    M. W. Renner, K. M. Barkigia, Y. Zhang, C. M. Medforth, K. M. Smith and J. Fajer, J. Am. Chem. Soc. 116, 8562 (1994).Google Scholar
  15. 15.
    J. R. Retsek, S. Gentemann, C. J. Medforth, K. M. Smith, V. S. Chirvony, J. Fajer and D. Holten, J. Phys. Chem. B 104, 6690 (2000).Google Scholar
  16. 16.
    C. M. Drain, S. Gentemann, J. A. Roberts, N. Y. Nelson, C. J. Medforth, S. Jia, M. C. Simpson, K. M. Smith, J. Fajer, J. A. Shelnutt and D. Holten, J. Am. Chem. Soc. 120, 3781 (1998).Google Scholar
  17. 17.
    S. Gentemann, N. Y. Nelson, L. Jaquinod, D. J. Nurco, S. H. Lueng, C. J. Medforth, K. M. Smith, J. Fajer and D. Holten, J. Phys. Chem. B. 101, 1247 (1997).Google Scholar
  18. 18.
    S. Gentemann, C. J. Medforth, T. P. Forsyth, D. J. Nurco, K. M. Smith, J. Fajer and D. Holten, J. Am. Chem. Soc. 116, 1994 (1994).Google Scholar
  19. 19.
    S. Gentemann, C. J. Medforth, T. Ema, N. Y. Nelson, K. M. Smith, J. Fajer and D. Holten, Chem. Phys. Lett. 245, 441 (1995).Google Scholar
  20. 20.
    A. Regev, T. Galili, C. J. Medforth, K. M. Smith, K. M. Barkigia, J. Fajer and H. Levanon, J. Phys. Chem. 98, 2520 (1994).Google Scholar
  21. 21.
    S. M. Prince, M. Z. Papiz, A. A. Freer, G. McDermott, A. M. Hawthornthwaite-Lawless, R. J. Cogdell and N. W. Isaacs, J. Mol. Biol. 268, 412 (1997).Google Scholar
  22. 22.
    S. M. Prince, Y.-F. Li, W. Zhou, R. E. Blankenship and J. P. Allen, J. Mol. Biol. 271, 456 (1997).Google Scholar
  23. 23.
    U. Ermler, G. Fritzsch, S. K. Buchanan and H. Michel, Structure 2, 925 (1994).Google Scholar
  24. 24.
    J. Deisenhofer, O. Epp, I. Sinning and H. Michel, J. Mol. Biol. 246, 429 (1995).Google Scholar
  25. 25.
    M. Sundamoorth, K. Kishi, M. H. Gold and T. L. Poulos, J. Mol. Biol. 269, 32759 (1994).Google Scholar
  26. 26.
    K. G. Ravichandran, S. S. Boddupalli, C. A. Hasemann, J. A. Peterson and J. Deisenhofer, Science 261, 731 (1993).Google Scholar
  27. 27.
    B. R. Crane, L. M. Siegel and E. D. Getzoff, Science 270, 59 (1995).Google Scholar
  28. 28.
    M. J. Maté, M. Zamocky, L. M. Nybyri, C. Herzog, P. M. Alzari, C. Betzel, F. Koller and I. Fita, J. Mol. Biol. 268, 135 (1999).Google Scholar
  29. 29.
    C. R. Raman, P. Martasek and B. S. S. Masters, in: The Porphyrin Handbook, K. M. Kadish, K. M. Smith and R. Guilard (Eds), Vol. 4, p. 293. Academic Press, New York (2000).Google Scholar
  30. 30.
    L. X. Chen, Z. Wang, G. Hartwich, I. Katheder, H. Scheer, A. Scherz, P. A. Montano and J. R. Norris, Chem. Phys. Lett. 234, 437 (1995).Google Scholar
  31. 31.
    J.-G. Ma, M. Laberge, X.-Z. Song, W. Jentzen, S.-L. Jia, J. Zhang, J. M. Vanderkooi and J. A. Shelnutt, Biochemistry 37, 5118 (1998).Google Scholar
  32. 32.
    U. Ermler, W. Grabarse, S. Shima, M. Goubeaud and R. K. Thauer, Science 278, 1457 (1997).Google Scholar
  33. 33.
    L. R. Furenlid, M. W. Renner and J. Fajer, J. Am. Chem. Soc. 112, 8987 (1990).Google Scholar
  34. 34.
    J. Telser, Y.-C. Fann, M. W. Renner, J. Fajer, S. Wang, H. Zhang, R. A. Scott and B. M. Hoffman, J. Am. Chem. Soc. 119, 733 (1997).Google Scholar
  35. 35.
    M. W. Renner and J. Fajer, J. Biol. Inorg. Chem. 6, 823 (2001), and references therein (see also Erratum, J. Biol. Inorg. Chem. 7, 352 (2002)).Google Scholar
  36. 36.
    J. Seth, V. Palaniappan and D. F. Bocian, Inorg. Chem. 34, 2201 (1994).Google Scholar
  37. 37.
    D. W. Margerum and S. L. Anlinker, in: The Bioinorganic Chemistry of Nickel, J. R. Lancaster (Ed.), Vol. 29. VCH Publishers, New York (1988).Google Scholar
  38. 38.
    A. Ghosh, T. Wondimagen, E. Gonzalez and I. Halvorsen, J. Inorg. Biochem. 78, 79 (2000).Google Scholar
  39. 39.
    A. Ulman, D. Fisher and J. A. Ibers, J. Heterocycl. Chem. 19, 409 (1982).Google Scholar
  40. 40.
    W. Jentzen, M. C. Simpson, J. D. Hobbs, X. Song, T. Ema, N. Y. Nelson, C. J. Medforth, T. Takeuchi, I. Goddard, W. A. and J. A. Shelnutt, J. Am. Chem. Soc. 117, 11085 (1995).Google Scholar
  41. 41.
    X.-Z. Song, W. Jentzen, S.-L. Jia, L. Jaquinod, D. J. Nurco, C. J. Medforth, K. M. Smith and J. A. Shelnutt, J. Am. Chem. Soc. 118, 12975 (1996).Google Scholar
  42. 42.
    J. A. Riddick and W. B. Bunger, in: Organic Solvents. Physical Properties and Methods of Puri. cation, 3rd edn, Vol. II. Wiley-Interscience, New York (1970).Google Scholar
  43. 43.
    G. W. Gokel, D. J. Cram, C. L. Liotta, H. P. Harris and F. L. Cook, J. Org. Chem. 39, 2445 (1974).Google Scholar
  44. 44.
    M. W. Renner, L. R. Furenlid, K. M. Barkigia and J. Fajer, J. Phys. IV France 7, 661 (1997).Google Scholar
  45. 45.
    W. R. Scheidt, in: The Porphyrin Handbook, K. M. Kadish, K. M. Smith and R. Guilard (Eds), Vol. 3, p. 49. Academic Press, New York (2000).Google Scholar
  46. 46.
    G. N. La Mar and F. A. Walker, in: The Porphyrins, D. Dolphin (Ed.), Vol. 4, p. 61. Academic Press, New York (1979).Google Scholar
  47. 47.
    W. Jentzen, E. Unger, G. Karvounis, J. A. Shelnutt, W. Dreybrodt and R. Schweitzer-Stenner, J. Phys. Chem. 100, 14184 (1996).Google Scholar
  48. 48.
    J. Fajer and M. S. Davis, in: The Porphyrins, D. Dolphin (Ed.), Vol. 4, p. 197. Academic Press, New York (1979).Google Scholar
  49. 49.
    M. Gouterman, in: The Porphyrins, D. Dolphin (Ed.), Vol. 3, p. 1. Academic Press, New York (1979).Google Scholar
  50. 50.
    I. Morishima, M. Takeda and K. Takatera, Biochem. Biophys. Res. Commun. 151, 1319 (1988).Google Scholar
  51. 51.
    C.-Y. Lin, S. Hu, T. Rush and T. G. Spiro, J. Am. Chem. Soc. 118, 9452 (1996).Google Scholar
  52. 55.
    W. F. Scholz, C. A. Reed, Y. J. Lee, W. R. Scheidt and G. Lang, J. Am. Chem. Soc. 104, 6791 (1982).Google Scholar
  53. 56.
    A. L. Balch, B. C. Noll, S. L. Phillips, S. M. Reid and E. P. Zovinka, Inorg. Chem. 32, 4730 (1993).Google Scholar
  54. 57.
    M. W. Renner, K. M. Barkigia, D. Melamed, K. M. Smith and J. Fajer, Inorg. Chem. 35, 5120 (1996).Google Scholar
  55. 58.
    The large 13C hyper. ne couplings are consistent with those observed in the much simpler [Ni(III)(13CN)6]-3 in which the unpaired electron is also in dz2 at 80 K: A = 92 G and A || = 100 G, T. L. Pappenhagen and D. W. Margerum, J. Am. Chem. Soc. 107, 4576 (1985).Google Scholar
  56. 59.
    C. Boudon, J.-P. Gisselbrecht and M. Gross, J. Electroanal. Chem. 345 (1993).Google Scholar

Copyright information

© VSP 2002 2002

Authors and Affiliations

  • Mark W. Renner
  • Kathleen M. Barkigia
  • Dan Melamed
  • Jean-Paul Gisselbrecht
  • Nora Y. Nelson
  • Kevin M. Smith
  • Jack Fajer

There are no affiliations available

Personalised recommendations