Skip to main content
Log in

Photoinduced bond homolysis of B12 coenzymes. An FT-EPR study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A Fourier Transform Electron Paramagnetic Resonance (FT-EPR) study was made of free radicals produced by photoinduced homolytic cleavage of the Co—C bond in methyl- and 5′-adenosylcobalamine (B12 coenzymes) and R(4-t-butyl-pyridyl)cobaloximes, R = methyl or ethyl. Spectra of methyl and adenosyl free radicals generated by the cobalamines show Chemically Induced Dynamic Electron Polarization (CIDEP) produced in precursor radical pairs. The polarization pattern can be accounted for in terms of bond cleavage via a singlet excited state of the cobalamines. In the case of methylcobalamine the polarization pattern is wavelength dependent confirming earlier findings that bond cleavage occurs via two reaction channels. Spectra of the methyl and ethyl radicals given by the cobaloximes show a remarkably strong dependence on solvent and the identity of the axial ligand trans to the leaving alkyl group. This illustrates that the character of the excited state involved in the bond cleavage reaction is strongly dependent on axial ligation of the cobalt ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. N. Schrauzer, L. P. Lee and J. W. Sibert, J. Am. Chem. Soc. 92, 2997 (1970).

    Google Scholar 

  2. B. T. Golding, T. J. Kemp, P. J. Sellers and E. Nocchi, J. Chem. Soc. Dalton 1266 (1977).

  3. C. Y. Mok and J. F. Endicott, J. Am. Chem. Soc. 100, 123 (1978).

    Google Scholar 

  4. J. F. Endicott and T. L. Netzel, J. Am. Chem. Soc. 101, 4000 (1979).

    Google Scholar 

  5. A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152 (1993).

    Google Scholar 

  6. C. Grissom, Chem. Rev. 95, 3 (1995).

    Google Scholar 

  7. E. Natarajan and C. B. Grissom, Photochem. Photobiol. 64, 286 (1996).

    Google Scholar 

  8. A. I. Kruppa, M. B. Taraban and T. V. Leshina, E. Natarajan and C. B. Grissom, Inorg. Chem. 36, 758 (1997).

    Google Scholar 

  9. L. A. Walker II, J. T. Jarrett, N. A. Anderson, S. H. Pullen, R. G. Matthews and R. J. Sension, J. Am. Chem. Soc. 120, 3597 (1998).

    Google Scholar 

  10. J. J. Shiang, L. A. Walker II, N. A. Anderson, A. G. Cole and R. J. Sension, J. Phys. Chem. B 103, 10532 (1999).

    Google Scholar 

  11. L. M. Yoder, A. G. Cole, L. A. Walker II and R. J. Sension, J. Phys. Chem. B 105, 12180 (2001).

    Google Scholar 

  12. Y. Sakaguchi, H. Hayashi and Y. J. I'Haya, J. Phys. Chem. 94, 291 (1990).

    Google Scholar 

  13. V. Balzani and V. Carassiti, Photochemistry of Coordination Compounds, Academic Press, New York (1970).

    Google Scholar 

  14. For a review of CIDEP effects and leading references see (a) K. A. McLauchlan, in: Modern Pulsed and Continuous Wave Electron Spin Resonance, L. Kevan and M. K. Bowman (Eds), pp. 285-364. Wiley, New York (1990). (b) N. Hirota and S. Yamauchi, in: Dynamic Spin Chemistry, S. Nagakura, H. Hayashi and T. Azumi (Eds), pp. 187-248.Wiley, New York (1998).

    Google Scholar 

  15. J. F. Endicott, Inorganic Electronic Structure and Spectroscopy, E. I. Solomon and A. B. P. Lever (Eds), Vol. II, pp. 291-342. Wiley, New York (1999).

    Google Scholar 

  16. M. Baumgarten, W. Lubitz and C. J. Winscom, Chem. Phys. Lett. 133, 102 (1987).

    Google Scholar 

  17. M. D. Wirt, C. J. Bender and J. Peisach, Inorg. Chem. 34, 1663 (1995).

    Google Scholar 

  18. For a review and leading references see H. van Willigen, in: Applications of Time-resolved EPR in Studies of Photochemical Reactions, Molecular and Supramolecular Photochemistry, K. S. Schanze and V. Ramamurthy (Eds), Vol. 6, Ch. 5, pp. 197-247. Marcel-Dekker, New York (2000).

    Google Scholar 

  19. D. Jameson, J. J. Grzybowski, D. E. Hammels, R. K. Castelano, M. E. Hoke, K. Freed, S. Basquill, A. Mendel and W. J. Shoemaker, J. Chem. Ed. 75, 447 (1998).

    Google Scholar 

  20. P. R. Levstein and H. van Willigen, J. Chem. Phys. 95, 900 (1991).

    Google Scholar 

  21. R. W. Fessenden and R. H. Schuler, J. Chem. Phys. 39, 2147 (1963).

    Google Scholar 

  22. B. Babior, T. H. Moss, W. H. Orme-Johnson and H. Beinert, J. Biol. Chem. 249, 4537 (1974).

    Google Scholar 

  23. D. M. Bartels, R. G. Lawler and A. D. Trifunac, J. Chem. Phys. 83, 2686 (1985).

    Google Scholar 

  24. K. A. McLauchlan and D. G. Stevens, J. Magn. Res. 63, 473 (1985).

    Google Scholar 

  25. C. D. Buckley and K. A. McLauchlan, Chem. Phys. Lett. 137, 86 (1987).

    Google Scholar 

  26. J. F. Boas, P. R. Hicks and J. R. Pilbrow, J. Chem. Soc. Farad. II 417 (1977).

  27. J. van Slageren, D. M. Martino, C. J. Kleverlaan, A. P. Bussandri, H. van Willigen and D. J. Stufkens, J. Phys. Chem. A 104, 5969 (2000).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussandri, A.P., Kiarie, C.W. & Van Willigen, H. Photoinduced bond homolysis of B12 coenzymes. An FT-EPR study. Research on Chemical Intermediates 28, 697–710 (2002). https://doi.org/10.1163/15685670260469366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/15685670260469366

Keywords

Navigation