Research on Chemical Intermediates

, Volume 28, Issue 7–9, pp 697–710 | Cite as

Photoinduced bond homolysis of B12 coenzymes. An FT-EPR study

  • Alejandro P. Bussandri
  • Cecilia W. Kiarie
  • Hans Van Willigen
Article

Abstract

A Fourier Transform Electron Paramagnetic Resonance (FT-EPR) study was made of free radicals produced by photoinduced homolytic cleavage of the Co—C bond in methyl- and 5′-adenosylcobalamine (B12 coenzymes) and R(4-t-butyl-pyridyl)cobaloximes, R = methyl or ethyl. Spectra of methyl and adenosyl free radicals generated by the cobalamines show Chemically Induced Dynamic Electron Polarization (CIDEP) produced in precursor radical pairs. The polarization pattern can be accounted for in terms of bond cleavage via a singlet excited state of the cobalamines. In the case of methylcobalamine the polarization pattern is wavelength dependent confirming earlier findings that bond cleavage occurs via two reaction channels. Spectra of the methyl and ethyl radicals given by the cobaloximes show a remarkably strong dependence on solvent and the identity of the axial ligand trans to the leaving alkyl group. This illustrates that the character of the excited state involved in the bond cleavage reaction is strongly dependent on axial ligation of the cobalt ion.

Keywords

Electron Paramagnetic Resonance Bond Cleavage Cobalamine Axial Ligand Polarization Pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. N. Schrauzer, L. P. Lee and J. W. Sibert, J. Am. Chem. Soc. 92, 2997 (1970).Google Scholar
  2. 2.
    B. T. Golding, T. J. Kemp, P. J. Sellers and E. Nocchi, J. Chem. Soc. Dalton 1266 (1977).Google Scholar
  3. 3.
    C. Y. Mok and J. F. Endicott, J. Am. Chem. Soc. 100, 123 (1978).Google Scholar
  4. 4.
    J. F. Endicott and T. L. Netzel, J. Am. Chem. Soc. 101, 4000 (1979).Google Scholar
  5. 5.
    A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152 (1993).Google Scholar
  6. 6.
    C. Grissom, Chem. Rev. 95, 3 (1995).Google Scholar
  7. 7.
    E. Natarajan and C. B. Grissom, Photochem. Photobiol. 64, 286 (1996).Google Scholar
  8. 8.
    A. I. Kruppa, M. B. Taraban and T. V. Leshina, E. Natarajan and C. B. Grissom, Inorg. Chem. 36, 758 (1997).Google Scholar
  9. 9.
    L. A. Walker II, J. T. Jarrett, N. A. Anderson, S. H. Pullen, R. G. Matthews and R. J. Sension, J. Am. Chem. Soc. 120, 3597 (1998).Google Scholar
  10. 10.
    J. J. Shiang, L. A. Walker II, N. A. Anderson, A. G. Cole and R. J. Sension, J. Phys. Chem. B 103, 10532 (1999).Google Scholar
  11. 11.
    L. M. Yoder, A. G. Cole, L. A. Walker II and R. J. Sension, J. Phys. Chem. B 105, 12180 (2001).Google Scholar
  12. 12.
    Y. Sakaguchi, H. Hayashi and Y. J. I'Haya, J. Phys. Chem. 94, 291 (1990).Google Scholar
  13. 13.
    V. Balzani and V. Carassiti, Photochemistry of Coordination Compounds, Academic Press, New York (1970).Google Scholar
  14. 14.
    For a review of CIDEP effects and leading references see (a) K. A. McLauchlan, in: Modern Pulsed and Continuous Wave Electron Spin Resonance, L. Kevan and M. K. Bowman (Eds), pp. 285-364. Wiley, New York (1990). (b) N. Hirota and S. Yamauchi, in: Dynamic Spin Chemistry, S. Nagakura, H. Hayashi and T. Azumi (Eds), pp. 187-248.Wiley, New York (1998).Google Scholar
  15. 15.
    J. F. Endicott, Inorganic Electronic Structure and Spectroscopy, E. I. Solomon and A. B. P. Lever (Eds), Vol. II, pp. 291-342. Wiley, New York (1999).Google Scholar
  16. 16.
    M. Baumgarten, W. Lubitz and C. J. Winscom, Chem. Phys. Lett. 133, 102 (1987).Google Scholar
  17. 17.
    M. D. Wirt, C. J. Bender and J. Peisach, Inorg. Chem. 34, 1663 (1995).Google Scholar
  18. 18.
    For a review and leading references see H. van Willigen, in: Applications of Time-resolved EPR in Studies of Photochemical Reactions, Molecular and Supramolecular Photochemistry, K. S. Schanze and V. Ramamurthy (Eds), Vol. 6, Ch. 5, pp. 197-247. Marcel-Dekker, New York (2000).Google Scholar
  19. 19.
    D. Jameson, J. J. Grzybowski, D. E. Hammels, R. K. Castelano, M. E. Hoke, K. Freed, S. Basquill, A. Mendel and W. J. Shoemaker, J. Chem. Ed. 75, 447 (1998).Google Scholar
  20. 20.
    P. R. Levstein and H. van Willigen, J. Chem. Phys. 95, 900 (1991).Google Scholar
  21. 21.
    R. W. Fessenden and R. H. Schuler, J. Chem. Phys. 39, 2147 (1963).Google Scholar
  22. 22.
    B. Babior, T. H. Moss, W. H. Orme-Johnson and H. Beinert, J. Biol. Chem. 249, 4537 (1974).Google Scholar
  23. 23.
    D. M. Bartels, R. G. Lawler and A. D. Trifunac, J. Chem. Phys. 83, 2686 (1985).Google Scholar
  24. 24.
    K. A. McLauchlan and D. G. Stevens, J. Magn. Res. 63, 473 (1985).Google Scholar
  25. 25.
    C. D. Buckley and K. A. McLauchlan, Chem. Phys. Lett. 137, 86 (1987).Google Scholar
  26. 26.
    J. F. Boas, P. R. Hicks and J. R. Pilbrow, J. Chem. Soc. Farad. II 417 (1977).Google Scholar
  27. 27.
    J. van Slageren, D. M. Martino, C. J. Kleverlaan, A. P. Bussandri, H. van Willigen and D. J. Stufkens, J. Phys. Chem. A 104, 5969 (2000).Google Scholar

Copyright information

© VSP 2002 2002

Authors and Affiliations

  • Alejandro P. Bussandri
  • Cecilia W. Kiarie
  • Hans Van Willigen

There are no affiliations available

Personalised recommendations