Advertisement

Research on Chemical Intermediates

, Volume 28, Issue 2–3, pp 257–264 | Cite as

Theoretical study on the characterization of the ribosyl C4'-radical observed in irradiated crystals of uridine

  • Maurizio Guerra
Article

Abstract

The angular dependence of the β-hydrogens hyperfine splitting (hfs) constants of the 1′amino 2′-deoxyribosyl C4′-radical (1) has been computed at the B3LYP/6-311G**//UHF/6-31G** level for the S-type (C2′endo ring puckering) and N-type (C3′endo ring puckering) configurations. Good agreement between the theoretical hfs constants and the three large experimental β-hydrogen hfs constants of the radical species observed in irradiated single crystals of uridine has been found only for the N-type configuration with the β5′-oxygen in the staggered conformation. It is concluded that the observed radical species is the uridine C4′-radical (2) that adopts the C3′ endo ring puckering as found in single crystals of uridine by means of neutron diffraction. This conclusion is in contrast with that reached in a previous theoretical study.

DNA RADICALS HYPERFINE COUPLING CONSTANTS STRUCTURE DFT CALCULATIONS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. D. Wetmore, R. J. Boyd and L. A. Eriksson, J. Phys. Chem. B 102, 7674 (1998).Google Scholar
  2. 2.
    E. Sagstuen, J. Magn. Reson. 44, 518 (1981).Google Scholar
  3. 3.
    A. O. Colson and M. D. Sevilla, J. Phys. Chem. 99, 3687 (1995).Google Scholar
  4. 4.
    M. Guerra, Phys. Chem. Chem. Phys. 3, 3792 (2001).Google Scholar
  5. 5.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, GAUSSIAN 98, Revision A7. Gaussian, Inc., Pittsburgh PA, 1998.Google Scholar
  6. 6.
    W. Saenger, Principles of Nucleic Acid Structure. Springer-Verlag, New York (1984).Google Scholar
  7. 7.
    C. Chatgilialoglu, T. Gimisis, M. Guerra, C. Ferreri, C. J. Emanuel, J. H. Horner, M. Newcomb, M. Lucarini and G. F. Pedulli, Tetrahedron Lett. 39, 3947 (1998).Google Scholar
  8. 8.
    H. Fischer, in: Free Radicals, J. K. Kochi (Ed.), Vol. 2, p. Ch. 19. Wiley, New York (1973).Google Scholar
  9. 9.
    C. Heller and H. M. McConnell, J. Chem. Phys. 32, 1535 (1960).Google Scholar
  10. 10.
    M. Guerra, J. Am. Chem. Soc. 114, 2077 (1992).Google Scholar
  11. 11.
    M. Guerra, Chem. Phys. Lett. 139, 463 (1987).Google Scholar
  12. 12.
    M. Guerra, Pure and Appl. Chem. 67, 797 (1995).Google Scholar
  13. 13.
    K. S. Chen and J. K. Kochi, J. Am. Chem. Soc. 96, 1383 (1974).Google Scholar
  14. 14.
    S. C. Gupta, A. Sequeira, T. P. Seshadri and M. A. Viswamitra, Acta Crystallogr. A 31, S42 (1975).Google Scholar
  15. 15.
    E. Sagstuen, Radiat. Res. 84, 164 (1980).Google Scholar
  16. 16.
    E. Sagstuen, Radiat. Res. 81, 188 (1980).Google Scholar
  17. 17.
    E. A. Green, R. D. Rosenstein, R. Shiono, D. J. Abraham, B. L. Trus and R. E. Marsh, Acta Crystallogr. B 31, 102 (1975).Google Scholar

Copyright information

© VSP 2002 2002

Authors and Affiliations

  • Maurizio Guerra

There are no affiliations available

Personalised recommendations