Research on Chemical Intermediates

, Volume 27, Issue 9, pp 937–943 | Cite as

Radiation cryochemistry of frozen dilute aqueous solutions: influence of the extent of solute segregation on the radiolysis pathway

  • Ewa Szajdzinska-Pietek
  • Janusz Bednarek
  • Andrzej Plonka
  • Andreas Hallbrucker
  • Erwin Mayer
Article

Abstract

Polycrystalline hexagonal ice containing thymine was γ-irradiated at 77 K, and X-band electron paramagnetic resonance spectra of the resulting radicals were recorded at this temperature immediately after irradiation, and after thermal annealing of the samples at temperatures up to 250 K. The examined frozen samples were obtained from hyperquenched glassy aqueous solution containing 0.005 M of thymine, by using two different procedures: (i) crystallization of the glass by heating up to 250 K, and (ii) warming the glass up to room temperature to melt it, and subsequent cooling of the solution in liquid N2. Thymine-derived radicals were detectable only in the samples obtained by crystallization of the glass. We conclude that the extent of solute segregation is less for the frozen aqueous solution made by route (i) than by route (ii). Therefore, the solute is more hydrated in the frozen sample made by route (i) and the primary products of water radiolysis can react with the solute. The present results are compared with those reported for the thymine/hyperquenched glassy water system (Bednarek et al. , J. Phys. Chem. B 103 , 6824 (1999)).

Keywords

Radiation Crystallization Aqueous Solution Hydrated Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Reviewed by: L. Kevan in G. Stein (Ed.), Radiation Chemistry of Aqueous Systems, pp. 21-71. The Weizmann Science Press of Israel, Jerusalem (1968).Google Scholar
  2. 2. (a)
    E.-G. Niemann in: Biophysik, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler (Eds), pp. 300-312. Springer-Verlag, Berlin (1982)Google Scholar
  3. 2. (b)
    C. Ferradini, J. Chim. Phys. 88, 873 (1991)Google Scholar
  4. 2. (c)
    C. von Sonntag, Int. J. Radiat. Biol. 65, 19 (1994).Google Scholar
  5. 3.
    F. Franks, in: Biophysics and Biochemistry at Low Temperatures, Chapter 3, pp. 37-61. Cambridge University Press, Cambridge (1985).Google Scholar
  6. 4.
    H. Plattner and L. Bachmann, Internat. Rev. Cytology 79, 237 (1982).Google Scholar
  7. 5.
    L. van den Berg and D. Rose, Arch. Biochem. Biophys. 81, 319 (1959).Google Scholar
  8. 6.
    N. Murase and F. Franks, Biophys. Chem. 34, 293 (1989).Google Scholar
  9. 7.
    G. Astl and E. Mayer, Biochim. Biophys. Acta 1080, 155 (1991).Google Scholar
  10. 8.
    E. Mayer, J. Appl. Phys. 58, 663 (1985); J. Microsc. 140, 3 (1985); Cryoletters 9, 66 (1988); in: Hydrogen Bond Networks, M.-C. Bellissent-Funel and J. C. Dore (Eds), pp. 355-372. Kluwer Academic Publishers, The Netherlands (1994).Google Scholar
  11. 9.
    J. Bednarek, A. Plonka, A. Hallbrucker, E. Mayer and M. C. R. Symons, J. Am. Chem Soc. 118, 9387 (1997).Google Scholar
  12. 10.
    J. Bednarek, A. Plonka, A. Hallbrucker and E. Mayer, Radiat. Phys. Chem. 53, 635 (1998).Google Scholar
  13. 11.
    J. Bednarek, A. Plonka, A. Hallbrucker and E. Mayer, Radiat. Phys. Chem. 55, 477 (1999).Google Scholar
  14. 12.
    J. Bednarek, A. Plonka, A. Hallbrucker and E. Mayer, J. Phys. Chem. B 103, 6824 (1999).Google Scholar
  15. 13.
    A. Plonka, E. Szajdzinska-Pietek, J. Bednarek, A. Hallbrucker and E. Mayer, Phys. Chem. Chem. Phys. 2, 1587 (2000).Google Scholar
  16. 14.
    J. Bednarek, A. Plonka, A. Hallbrucker and E. Mayer, J. Phys. Chem. A 102, 9091 (1998).Google Scholar
  17. 15.
    A. Hallbrucker and E. Mayer, J. Phys. Chem. 92, 2007 (1988).Google Scholar
  18. 16.
    E. Mayer and A. Hallbrucker, Nature 325, 601 (1987).Google Scholar
  19. 17.
    W. Wang and M. D. Sevilla, Int. J. Radiat. Biol. 66, 683 (1994).Google Scholar
  20. 18.
    G. Fleissner, A. Hallbrucker and E. Mayer, J. Phys. Chem. 99, 8401 (1995).Google Scholar
  21. 19.
    S. Gregoli, M. Olast and A. Bertinchamps, Radiat. Res. 89, 238 (1982).Google Scholar
  22. 20.
    M. C. R. Symons, in: The Early Effects of Radiation on DNA, E. M. Fielden and P. O'Neil (Eds), NATO ASI Series H, Vol. 54, pp. 111-124. Springer, Berlin (1991).Google Scholar
  23. 21.
    W. Wang, D. Becker and M. D. Sevilla, Radiat. Res. 135, 146 (1993).Google Scholar

Copyright information

© VSP 2001 2001

Authors and Affiliations

  • Ewa Szajdzinska-Pietek
  • Janusz Bednarek
  • Andrzej Plonka
  • Andreas Hallbrucker
  • Erwin Mayer

There are no affiliations available

Personalised recommendations