Research on Chemical Intermediates

, Volume 27, Issue 7–8, pp 847–854 | Cite as

On the reversible protonation of acrylic-type compounds

  • L. Wojnárovits
  • E. Takács
  • K. Dajka
  • S. S. Emmi


The pseudo-first-order protonation rate coefficients of radical anions of acrylic-type monomers (produced by pulse radiolysis in aqueous acidic solutions) were found to be linearly dependent on the H3O+ concentration with second order rate coefficients of several times 1010 mol-1 dm3 s-1. The rate coefficients showed little structure dependence. On the contrary the equilibrium constants of protonation and therefore also the rate coefficients of deprotonation showed several orders of magnitude dependence on the anion structure. In the paper this structure dependence is discussed.


Physical Chemistry Inorganic Chemistry Acidic Solution Equilibrium Constant Radical Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Lilie and A. Henglein, Ber. Bunsenges. Phys. Chem. 73, 170 (1969).Google Scholar
  2. 2.
    E. Hayon and M. Simic, J. Am. Chem. Soc. 95, 2433 (1973).Google Scholar
  3. 3.
    V. Madhavan, N. N. Lichtin and E. Hayon, J. Am. Chem. Soc. 97, 2898 (1975).Google Scholar
  4. 4.
    M. Kumar, M. H. Rao, P. N. Moorthy and K. N. Rao, Radiat. Phys. Chem. 33, 219 (1989).Google Scholar
  5. 5.
    Á. Sáfrány and L. Wojnárovits, Radiat. Phys. Chem. 41, 1027 (1993).Google Scholar
  6. 6.
    Á. Biro and L. Wojnárovits, Radiat. Phys. Chem. 47, 389 (1996).Google Scholar
  7. 7.
    L. Wojnárovits, E. Takács, K. Dajka, M. D'Angelantonio and S. S. Emmi, Radiat. Phys. Chem. 60, 337 (2001).Google Scholar
  8. 8.
    P. Strauss, W. Knolle and S. Naumov, Macromol. Chem. Phys. 199, 2229 (1998).Google Scholar
  9. 9.
    Á. Sáfrány and L. Wojnárovits, Macromol. Chem. Phys. (submitted).Google Scholar
  10. 10.
    C. Van Paemel, H. Frumin, V. L. Brooks, R. Failor and M. D. Sevilla, J. Phys. Chem. 79, 839 (2075).Google Scholar
  11. 11.
    E. Takács, K. Dajka, L. Wojnárovits and S. S. Emmi, Phys. Chem. Chem. Phys. 2, 1431 (2000).Google Scholar
  12. 12.
    M. J. Pilling and P. W. Seakins, Reaction Kinetics, Ch. 6. Oxford University Press, Oxford (2095).Google Scholar
  13. 13.
    V. Madhavan, N. N. Lichtin and E. Hayon, J. Org. Chem. 41, 2320 (1976).Google Scholar
  14. 14.
    R. W. Fessenden and O. P. Chawla, J. Am. Chem. Soc. 96, 2262 (1974).Google Scholar
  15. 15.
    A. J. Swallow, in: The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, J. H. Baxendale and F. Busi (Eds), p. 289. Reidel, Dordrecht (1982).Google Scholar
  16. 16.
    S. S. Emmi, G. Beggiato and G. Casalbore-Miceli, Radiat. Phys. Chem. 33, 29 (1989).Google Scholar
  17. 17.
    G. Földiák, P. Hargittai, L. Kaszanyiczki and L. Wojnárovits, J. Radioanal. Nucl. Chem., Articles. 125, 19 (1988).Google Scholar
  18. 18.
    E. Hayon and M. Simic, Acc. Chem. Res. 7, 114 (1974).Google Scholar
  19. 19.
    R. Schuler, J. Phys. Chem. 96, 7169 (1986).Google Scholar
  20. 20.
    S. Das and C. von Sonntag, Z. Naturforsch. 41b, 505 (1986).Google Scholar
  21. 21.
    C. Hansch, A. Leo and R. A. Taft, Chem. Rev. 91, 165 (1991).Google Scholar

Copyright information

© VSP 2001 2001

Authors and Affiliations

  • L. Wojnárovits
  • E. Takács
  • K. Dajka
  • S. S. Emmi

There are no affiliations available

Personalised recommendations