Advertisement

Research on Chemical Intermediates

, Volume 27, Issue 7–8, pp 795–806 | Cite as

Ultrafast back electron transfer processes in the photoexcited methylviologen-iodide charge transfer complexes

  • Stanislas Pommeret
  • Jean-Claude Mialocq
  • Bogdan Tokarczyk
  • Włodzimierz Jarzeba
Article

Abstract

The ultrafast back electron transfer in the excited charge transfer complexes of the methylviologen with iodide ions has been investigated using femtosecond transient absorption spectroscopy. Methylviologen and iodide form two types of charge transfer complexes each characterized by a charge transfer band in the same spectral region. At low I- concentrations mainly a 1:1 complex MV2+(I-) is present while at high I- concentrations both 1:1 and 1:2 complexes MV2+(I-)2 can be observed. Ultrashort laser pulses at 400 nm are used to excite both complexes in their charge transfer band. The observed transient absorption can be represented by a biexponential function with 1 ps and 20 ps time constants and attributed to the decay of the MV+./I. and MV+./I2.- radical pair respectively. The excitation of the 1:1 complex leads to the formation of the MV+./I. radical pair while the excitation of the 1:2 complex leads to the formation of the MV+./I. and MV+./I2.- radical pairs.

Keywords

Charge Transfer Absorption Spectroscopy Radical Pair Methylviologen Transient Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    L. Michaelis and E. S. Hill, J. Gen. Physiol. 16, 859 (1933).Google Scholar
  2. 2.
    A. D. Dodge, Endeavour 30, 130 (1971).Google Scholar
  3. 3.
    E. Borgarello, J. Kiwi, E. Pelizetti, M. Visia and M. Gratzel, Nature 289, 158 (1981).Google Scholar
  4. 4.
    A. Harriman, G. Porter and M. C. Richoux, JCS Faraday Trans. 2 77, 833 (1981).Google Scholar
  5. 5.
    K. Kalyanasundram, Coord. Chem. Rev. 46, 159 (1982).Google Scholar
  6. 6.
    T. J. Meyer, Prog. Inorg. Chem. 30, 389 (1983).Google Scholar
  7. 7.
    A. Henglein, J. Phys. Chem. 86, 2291 (1982).Google Scholar
  8. 8.
    T. Watanabe and K. Honda, J. Phys. Chem. 86, 2617 (1982).Google Scholar
  9. 9.
    E. M. Kosower, J. Am. Chem. Soc. 80, 3253 (1958).Google Scholar
  10. 10.
    A. Nakahara and J. H. Wang, J. Phys. Chem. 67, 496 (1963).Google Scholar
  11. 11.
    T. W. Ebbesen and G. Ferraudi, J. Phys. Chem. 87, 3717 (1983).Google Scholar
  12. 12.
    T. W. Ebbesen, G. Levey and L. K. Patterson, Nature 298, 545 (1982).Google Scholar
  13. 13.
    T. W. Ebbesen, L. E. Manring and K. S. Peters, J. Am. Chem. Soc. 106, 7400 (1984).Google Scholar
  14. 14.
    A. Hormann, W. Jarzęba and P. F. Barbara, J. Phys. Chem. 99, 2006 (1995).Google Scholar
  15. 15.
    W. Jarzęba, K. A. M. Thakur, A. Hormann and P. F. Barbara, J. Phys.Chem. 99, 2016 (1995).Google Scholar
  16. 16.
    W. Jarzęba, J. Mol. Liq. 106, 9213 (1997).Google Scholar
  17. 17.
    R. J. Cave and M. D. Newton, J. Chem. Phys. 106, 9213 (1997).Google Scholar
  18. 18.
    S. Pommeret, R. Naskręcki, P. van der Meulen, M. Menard, G. Vigneron and T. Gustavsson, Chem. Phys. Lett. 228, 833 (1997).Google Scholar
  19. 19.
    K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskręcki and J.-C. Mialocq, J. Appl. Phys. 87, 2340 (2000).Google Scholar
  20. 20.
    N. M. D. Brown, D. J. Cowley and M. Hashmi, J. Chem. Soc., Perkin. Trans. 2, 469 (1979).Google Scholar
  21. 21.
    D. Le Roux, J.-C. Mialocq, O. Anitoff and G. Folcher, J. Chem. Soc., Faraday Trans. 2 80, 909 (1984).Google Scholar
  22. 22.
    P. Job, Ann. Chim. 9, 113 (1928).Google Scholar
  23. 23.
    W. C. Vosburgh and G. R. Cooper, J. Am. Chem. Soc. 63, 437 (1941).Google Scholar
  24. 24.
    C. W. Davies, in: Ion Association, pp. 39-43. Butterworth, London (1962).Google Scholar
  25. 25.
    H. S. Harned and R. A. Robinson, Multicomponent Electrolite Solutions. Pergamon, Oxford (1968).Google Scholar
  26. 26.
    R. F. Platford, Env. Sci. Tech. 4, 410 (1970).Google Scholar
  27. 27.
    R. A. Robinson and R. H. Stokes, in: Electrolyte Solutions, Appendix 8.10. Butterworth, London (1965).Google Scholar
  28. 28.
    T. W. Ebbesen and M. Ohgushi, Photochem. Photobiol. 38, 251 (1983).Google Scholar
  29. 29.
    I. Loeff, A. Treinin and H. Linschitz, J. Phys. Chem. 88, 4931 (1984).Google Scholar
  30. 30.
    M. Mac, J. Wirz and J. Najbar, Helv. Chim. Acta 76, 1319 (1993).Google Scholar
  31. 31.
    L. I. Grossweiner and M. S. Matheson, J. Phys. Chem. 61, 1089 (1957).Google Scholar
  32. 32.
    R. Devonshire and J. Weiss, J. Phys. Chem. 72, 3815 (1968).Google Scholar
  33. 33.
    N. Mataga, Electron transfer in inorganic, organic and biological systems, in: Advances in Chemistry Series, J. R. Bolton, N. Mataga and G. McLendon (Eds), p. 228, Ch. 6. ACS (1991) (and references therein).Google Scholar
  34. 34.
    W. Jarzęba, S. Pommeret and J.-C. Mialocq, Chem. Phys. Lett. 333, 419 (2001).Google Scholar
  35. 35.
    I. Benjamin, P. F. Barbara, B. J. Gertner and J. T. Hynes, J. Phys. Chem. 99, 7557 (1995).Google Scholar
  36. 36.
    P. K. Walhout, J. C. Alfano, K. A. M. Thakurand and P. F. Barbara, J. Phys. Chem. 99, 7568 (1995).Google Scholar
  37. 37.
    N. Mataga and H. Miyasaka, Adv. Chem. Phys. 107, 431 (1999).Google Scholar
  38. 38.
    T. Asahi, M. Ohkohchi and N. Mataga, J. Phys. Chem. 97, 13132 (1993).Google Scholar
  39. 39.
    P. Wardman, J. Phys. Chem. Ref. Data 18, 1367 (1989).Google Scholar

Copyright information

© VSP 2001 2001

Authors and Affiliations

  • Stanislas Pommeret
  • Jean-Claude Mialocq
  • Bogdan Tokarczyk
  • Włodzimierz Jarzeba

There are no affiliations available

Personalised recommendations