Research on Chemical Intermediates

, Volume 26, Issue 6, pp 599–619 | Cite as

Highly effective methane conversion to aromatic hydrocarbons by means of microwave and rf-induced catalysis

  • J. K. S. Wan
  • Y. G. Chen
  • Y. J. Lee
  • M. C. Depew


Conversion of methane to higher hydrocarbon products, in particular, aromatic hydrocarbons has been achieved with good methane conversion and selectivity to aromatic products over heterogeneous catalysts using both high power pulsed microwave and rf energy. For example, under microwave irradiation > 85% conversion of methane and 60% selectivity to aromatics could be achieved. Cu, Ni, Fe and Al metallic materials are highly effective catalysts for the aromatization of methane via microwave heating; however, with a variety of supported catalysts the major products were C2 hydrocarbons and the conversion of methane was low. The use of sponge, wire and net forms of these metal catalysts was found advantageous in effective methane conversion. The reactions are considered to be free radical in nature and to proceed through an intermediate stage involving formation of acetylene. The influence of catalyst nature and configuration, as well as the microwave and rf irradiation parameters on the reaction efficiency and product selectivity has been examined in both batch and continuous flow conditions.


Microwave Irradiation Methane Conversion Pulse Microwave Aromatic Product Microwave Power Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.F. Liu, R.S. Liu, K.Y. Liew, R.E. Johnson, and J.H. Lunsford, J. Am. Chem. Soc. 106, 4117 (1984).CrossRefGoogle Scholar
  2. 2.
    N.R. Foster, Appl. Catal. 19, 1 (1985).CrossRefGoogle Scholar
  3. 3.
    J.S. Lee and S.T. Oyama, Catal. Rev.-Sci. Eng. 30, 249 (1988).CrossRefGoogle Scholar
  4. 4.
    G.J. Hutchings, M.S. Surrell, and J.R. Woodhouse, Chem. Soc. Rev. 18, 251 (1989).CrossRefGoogle Scholar
  5. 5.
    R. Pitchai and K. Klier, Catal. Rev.-Sci. Eng. 28, 13 (1986).CrossRefGoogle Scholar
  6. 6.
    K.C.C. Kharas and J.H. Lunsford, J. Am. Chem. Soc. 111, 2336 (1989).CrossRefGoogle Scholar
  7. 7.
    O.V. Krylov, Catal. Today 18, 209 (1993).CrossRefGoogle Scholar
  8. 8.
    J.M. Fox III, Catal. Rev.-Sci. Eng. 35, 169 (1993).CrossRefGoogle Scholar
  9. 9.
    L. Guczi, R.A. Van Santen, and K.V. Sayma, Catal. Rev.-Sci. Eng. 38, 249 (1996).CrossRefGoogle Scholar
  10. 10.
    A. Parmaliana, V. Sokolovskii, D. Miceli, F. Arena, and N. Giordano, J. Catal. 148, 514 (1994).CrossRefGoogle Scholar
  11. 11.
    F. Solymosi, J. Cserenyi, A. Szoke, T. Bansagi, and A. Oszko, J. Catal. 165, 150 (1997).CrossRefGoogle Scholar
  12. 12.
    T. Koerts, M.J.A.G. Deelen, and R.A. Van Santen, J. Catal. 138, 101 (1992).CrossRefGoogle Scholar
  13. 13.
    L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, and Y. Xu, Catal. Lett. 21, 35 (1993).CrossRefGoogle Scholar
  14. 14.
    K. Tanaka, J. Okabe, and K. Aomura, J. Chem. Soc., Chem. Commun. 921 (1982).Google Scholar
  15. 15.
    J.K.S. Wan, M.Y. Tse, H. Husby, and M.C. Depew, J. Microwave Power and Electromagnetic Energy 25, 32 (1990).Google Scholar
  16. 16.
    D.M.P. Mingos and D.R. Boghurst, Chem. Soc. Rev. 20, 1 (1991).CrossRefGoogle Scholar
  17. 17.
    J.M. Thiebaut, G. Roussy, M. Medjram, L. Seyfield, F. Garin, and J. Maire, Catal. Lett. 21, 133 (1993).CrossRefGoogle Scholar
  18. 18.
    G. Bond, R.B. Moyes, and D.A. Whan, Catal. Today 17, 427 (1993).CrossRefGoogle Scholar
  19. 19.
    G. Bond, R.B. Moyes, I. Theaker, and D.A. Whan, Top. Catal. 1, 177 (1994).CrossRefGoogle Scholar
  20. 20.
    S.L. Suib and R.P. Zerger, J. Catal. 139, 383 (1993).CrossRefGoogle Scholar
  21. 21.
    W. Cho, Y. Baek, D. Park, Y.C. Kim, and M. Anpo, Res. Chem. Intermed. 24, 55 (1998).CrossRefGoogle Scholar
  22. 22.
    T.R.J. Dineson, M.Y. Tse, M.C. Depew and J.K.S. Wan, Res. Chem. Intermed., 15, 113 (1991).Google Scholar
  23. 23.
    J.K.S. Wan, US patent 1,159010 (1983).Google Scholar
  24. 24.
    K. Wolf, H.K.J. Choi and J.K.S. Wan, AOSTRA J. Res., 3 53 (1986); K.L. Cameron, M.C. Depew and J.K.S. Wan, Res. Chem. Intermed., 16, 57 (1991).Google Scholar
  25. 25.
    J.K.S. Wan, K. Wolf, and R.D. Heyding, in: S. Aliaguine and A. Mahay (Eds.), Catalysis on the Energy Scene, Elsevier, Amsterdam, 1984, p. 561.Google Scholar
  26. 26.
    J.K.S. Wan and J.K. Kriz, US patent 4,545879 (1985).Google Scholar
  27. 27.
    J.K.S. Wan, US patent 4,574038 (1986); S.D. Pollington, M.S. Ioffe, M. Westergaard and J.K.S. Wan, Res. Chem. Intermed., 21, 59 (1995).Google Scholar
  28. 28.
    M.Y. Tse, M.C. Depew, and J.K.S. Wan, Res. Chem. Intermed. 13, 221 (1990).Google Scholar
  29. 29.
    J.K.S. Wan and T.A. Koch, Res. Chem. Intermed. 20, 29 (1994).Google Scholar
  30. 30.
    G. Bamwenda, M.C. Depew, and J.K.S. Wan, Res. Chem. Intermed. 19, 553 (1993).Google Scholar
  31. 31.
    G. Bamwenda, E. Moore and J.K.S. Wan, Res. Chem. Intermed., 17, 243 (1992).Google Scholar
  32. 32.
    M.S. Ioffe, S.D. Pollington, and J.K.S. Wan, J. Catal. 151, 349 (1995).CrossRefGoogle Scholar
  33. 33.
    C. Marun, L. D. Conde and S. L. Suib, J. Phys. Chem., 103, 4332 (1999).Google Scholar
  34. 34.
    C. Chen, P. Hong, S. Dai, and J. Kan, J. Chem. Soc. Faraday Trans. 91, 1179 (1995).CrossRefGoogle Scholar
  35. 35.
    R.L. McCarthy, J. Chem. Phys. 22, 1360 (1954).CrossRefGoogle Scholar
  36. 36.
    Y. Kawahara, J. Phys. Chem. 73, 1648 (1969).CrossRefGoogle Scholar
  37. 37.
    R. Mach, H. Drost, J. Rutkowsky, and U. Timm, in “ISPC-7, Eindhoven, 1985,” p. 531.Google Scholar
  38. 38.
    J.H. Huang and S.L. Suib, Res. Chem. Intermed. 20, 133 (1994).Google Scholar
  39. 39.
    V.I. Fedoseev, Y.I. Aristov, Y.Y. Tanashev, and V.N. Parmon, Kinet. and Catal. 37, 808 (1996).Google Scholar
  40. 40.
    A.G. Whittaker and M.P. Mingos, J. Chem. Soc. Dalton Trans. 2073 (1995).Google Scholar

Copyright information

© VSP 2000

Authors and Affiliations

  • J. K. S. Wan
    • 1
  • Y. G. Chen
    • 1
  • Y. J. Lee
    • 1
  • M. C. Depew
    • 1
  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations