Advertisement

Research on Chemical Intermediates

, Volume 26, Issue 2, pp 171–183 | Cite as

Visible light induced oxygenation of cyclohexene with activation of water sensitized by dihydroxy coordinated tetraphenyloprphyrinatotin(IV)

  • Shinsuke Takagi
  • Hidenobu Morimotor
  • Tsutomu Shiragami
  • Haruo Inoue
Article

Abstract

Visible light irradiation of a reaction mixture containing dihydroxy coordinated tetraphenylporphyrinatotin(IV), cyclohexene and potassium hexachloroplatinate induced oxygenation of the cyclohexene under degassed conditions. In the reaction system, a water molecule served as the oxygen donor. Cyclohex-2-enol, 1,2-dichlorocyclohexane and 2-chlorocyclohexanol were the major oxidation products and the quantum yield was around 0.1. An experiment using H2 18O revealed that an 18O atom was quantitatively incorporated into the oxygenated products. The reaction was initially induced by an electron transfer from an excited triplet porphyrin to potassium hexachloroplatinate producing a cation radical of the porphyrin. Metal-oxo type complexes formed through deprotonation of the hydroxy group of the porphyrin cation radical were key reactive intermediates reacting with cyclohexene. Two kinds of the metal-oxo type complex reactive intermediate were kinetically demonstrated to be involved in the reaction system, producing different oxidation products from cyclohexene.

Keywords

Porphyrin Cyclohexene Cation Radical Visible Light Irradiation K2PtCl6 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    K. Kalyanasundaram and M. Gratzel, Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993 and references therein.Google Scholar
  2. 1. (b)
    A.J. Bard and M.A. Fox, Acc. Chem. Res. 28, 141 (1995) and references therein.CrossRefGoogle Scholar
  3. 2. (a)
    J.-M. Lehn and J.-P. Sauvage, Nouv. J. Chim. 1, 449 (1977).Google Scholar
  4. 2. (b)
    A. Moradpour, E. Amouyal, P. Keller, and H. Kagan, Nouv. J. Chim. 2, 547 (1978).Google Scholar
  5. 2. (c)
    A. Harriman, G. Porter, and M.-C. Richoux, J. Chem. Soc. Trans. 2, 77, 833 (1981).CrossRefGoogle Scholar
  6. 2. (d)
    O. Johansen, A.W.H. Mau, and W.H.F. Sass, Chem. Phys. Lett. 94, 107, 113 (1983).CrossRefGoogle Scholar
  7. 2. (e)
    M. Gratzel, Energy Resources through Photochemistry and Catalysis, Academic Press, New York, 1983.Google Scholar
  8. 3. (a)
    J.-M. Lehn, J.-P. Sauvage, and R. Ziessel, Nouv. J. Chim. 3, 423 (1979).Google Scholar
  9. 3. (b)
    W. Erbs, J. Kiwi, and M. Gratzel, Chem. Phys. Lett. 110, 648 (1984).CrossRefGoogle Scholar
  10. 3. (c)
    W. Erbs, J. Desilvestro, E. Borgarello, and M. Gratzel, J. Phys. Chem. 88, 4001 (1984).CrossRefGoogle Scholar
  11. 3. (d)
    G.S. Nahor, S. Mosseri, P. Neta, and A. Harriman, J. Phys. Chem. 92, 4499 (1988).CrossRefGoogle Scholar
  12. 3. (e)
    G.S. Nahor, P. Neta, P. Hambright, A.N. Thompson, Jr., and A. Harriman, J. Phys. Chem. 93, 6181 (1989).CrossRefGoogle Scholar
  13. 3. (f)
    M. Kaneko, G.-J. Yao, and A. Kira, J. Chem. Soc., Chem. Commun. 1338 (1989).Google Scholar
  14. 3. (g)
    A. Harriman, J. Photochem. Photobiol. A: Chem. 51, 41 (1990).CrossRefGoogle Scholar
  15. 3. (h)
    T.J. Meyer, Acc. Chem. Res. 22, 163 (1989).CrossRefGoogle Scholar
  16. 3. (i)
    D. Geselowitz and T. Meyer, Inorg. Chem. 29, 3894 (1990).CrossRefGoogle Scholar
  17. 4. (a)
    F.R. Remke, D.L. DeLaet, J. Gao, and C.P. Kubiak, J. Am. Chem. Soc. 110, 6904 (1988).CrossRefGoogle Scholar
  18. 4. (b)
    Y. Ito, Y. Uozo, and T. Matsumura, J. Chem. Soc., Chem. Commun. 562 (1988).Google Scholar
  19. 4. (c)
    J.-M. Lehn and R. Ziessel, J. Organometal. Chem. 382, 157 (1990).CrossRefGoogle Scholar
  20. 4. (d)
    M. Ishida, T. Terada, K. Tanaka, and T. Tanaka, Inorg. Chem. 29, 905 (1990).CrossRefGoogle Scholar
  21. 4. (e)
    T.J. Meyer, J. Chem. Soc., Chem. Commun. 1416 (1985).Google Scholar
  22. 4. (f)
    S. Matsuoka, K. Yamamnoto, T. Ogawa, M. Kusaba, N. Nakashima, E. Fujita, and S. Yanagida, J. Am. Chem. Soc. 115, 601 (1993).CrossRefGoogle Scholar
  23. 4. (g)
    J. Hewecker, J.-M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun. 536 (1983).Google Scholar
  24. 4. (h)
    I. Willner and D. Mandler, J. Am. Chem. Soc. 111, 1330 (1989).CrossRefGoogle Scholar
  25. 4. (i)
    J. Costamagna, G. Ferraudi, J. Canales, and J. Vargas, Coord. Chem. Rev. 148, 221 (1996).CrossRefGoogle Scholar
  26. 5. (a)
    H. Inoue, M. Sumitani, A. Sekita, and M. Hida, J. Chem. Soc., Chem. Commun. 1681 (1987).Google Scholar
  27. 5. (b)
    H. Inoue, T. Okamoto, Y. Kameo, M. Sumitani, A. Fujwara, D. Ishibashi, and M. Hida, J. Chem. Soc., Perkin Trans. 1 105 (1994).Google Scholar
  28. 5. (c)
    S. Takagi, T. Okamoto, T. Shiragami, and H. Inoue, J. Org. Chem. 59, 7373 (1994).CrossRefGoogle Scholar
  29. 5. (d)
    T. Okamoto, S. Takagi, T. Shiragami, and H. Inoue, Chem. Lett. 687 (1993).Google Scholar
  30. 6.
    T. Shiragami, K. Kubomura, D. Ishibashi, and H. Inoue, J. Am. Chem. Soc. 118, 6311 (1996).CrossRefGoogle Scholar
  31. 7.
    S. Takagi, M. Suzuki, T. Shiragami, and H. Inoue, J. Am. Chem. Soc. 119, 8712 (1997).CrossRefGoogle Scholar
  32. 8.
    J.M. Garrison, D. Ostovic, and T.C. Bruice, J. Am. Chem. Soc. 111, 4960 (1989).CrossRefGoogle Scholar
  33. 9.
    F.R. Hopfand and D.G. Whitten, in: K.M. Smith (Ed.), Porphyrins and Metalloporpyhrins, Elsevier, 1975, chapter 16, pp. 666–698.Google Scholar
  34. 10.
    J.D. Dean (Ed.), Lange’s Handbook of Chemistry, McGraw-Hill Book Company, New York, 1985, pp. 6–14.Google Scholar
  35. 11.
    T. Shimada, S. Takagi, M. Suzuki, and H. Inoue, to be submitted.Google Scholar

Copyright information

© VSP 2000

Authors and Affiliations

  • Shinsuke Takagi
    • 1
  • Hidenobu Morimotor
    • 1
  • Tsutomu Shiragami
    • 1
  • Haruo Inoue
    • 1
  1. 1.Department of Applied Chemistry, Graduate Course of EngineeringTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations