Advertisement

InflammoPharmacology

, Volume 13, Issue 5–6, pp 441–454 | Cite as

Comparative study of anti-inflammatory and ulcerogenic activities of different cyclo-oxygenase inhibitors

  • Alessandra Gambero
  • Tagliane Liza Becker
  • Andréa Silva Zago
  • Andréa Fermino de Oliveira
  • José PedrazzoliJr.
Article

Abstract

The aim of the present work was to study the in vivo anti-inflammatory activity of six NSAIDs, ibuprofen, diclofenac, nimesulide, meloxicam, celecoxib and rofecoxib, using the rat air-pouch model of inflammation to characterize the ability of these drugs to induce gastric damage and PGE2 inhibition. Selective compounds were observed to have no ulcerogenic properties at anti-inflammatory doses; however, these drugs were weaker inhibitors of several inflammatory aspects such as cell influx and exudate formation. In contrast, the non-selective and preferential compounds present anti-inflammatory properties at lower doses than presented by selective drugs. At anti-inflammatory doses, only meloxicam and ibuprofen produced gastric damage and inhibition of PGE2 synthesis, suggesting that ulcerogenic properties of NSAIDs cannot be predicted by their selectivity index, since meloxicam demonstrates ulcerogenic properties despite its preferential profile.

Key words

Non-steroidal anti-inflammatory drugs cyclo-oxygenases air pouch prostaglandin E2 leukocyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, I., Neuman, R. G., Sachs, J., et al. (1990). Efficacy and gastric safety of etodolac as determined in cultured human gastric and synovial cells, Gastroenterology 24, 40–47.Google Scholar
  2. Bennett, A. and Villa, G. (2000). Nimesulide: an NSAID that preferentially inhibits COX-2, and has various unique pharmacological activities, Expert. Opin. Pharmacother. 1, 277–286.PubMedCrossRefGoogle Scholar
  3. Blain, H., Boileau, C., Lapicque, F., et al. (2002). Limitation of the in vitro whole blood assay for predicting the COX selectivity of NSAIDs in clinical use, Br. J. Clin. Pharmacol. 53, 255–265.PubMedCrossRefGoogle Scholar
  4. Chan, C. C., Boyce, S., Brideau, C., et al. (1999). Rofecoxib [Vioxx, MK-0966; 4-(4′-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles, J. Pharmacol. Exp. Ther. 290, 551–560.PubMedGoogle Scholar
  5. Cullen, L., Kelly, L., Connor, S. O., et al. (1998). Selective cyclooxygenase-2 inhibition by nimesulide in man, J. Pharmacol. Exp. Ther. 287, 578–582.PubMedGoogle Scholar
  6. De Leval, X., Delarge, J., Devel, P., et al. (2001). Evaluation of classical NSAIDs and COX-2 selective inhibitors on purified ovine enzymes and human whole blood, Prostaglandins Leukot. Essent. Fatty Acids 64, 211–216.PubMedCrossRefGoogle Scholar
  7. Dvornik, D. M. (1997). Tissue selective inhibition of prostaglandin biosynthesis by etodolac, J. Rheumatol. 14, 40–47.Google Scholar
  8. Ehrich, E. W., Dallob, A. and De Lepeleire, I. (1999). Characterization of rofecoxib as a cyclooxigenase-2 isoform inhibitor and demonstration of analgesia in the dental pain model, Clin. Pharmacol. Ther. 65, 336–347.PubMedCrossRefGoogle Scholar
  9. Engelhardt, G. (1996). Pharmacology of meloxicam, a new non-steroidal anti-inflammatory drug with an improved safety profile through preferential inhibition of COX-2, Br. J. Rheumatol. 35, 4–12.PubMedGoogle Scholar
  10. Engelhardt, G., Bogel, R., Schnitzler, C., et al. (1996). Meloxicam: influence on arachidonic acid metabolism. Part II. In vivo findings, Biochem. Pharmacol. 12, 29–38.CrossRefGoogle Scholar
  11. Gamberini, M. T., Skorupa, L. A., Souccar, C., et al. (1991). Inhibition of gastric secretion by a water extract from Baccharis triptera, Mart, Mem. Inst. Oswaldo Cruz 2, 137–139.Google Scholar
  12. Garcia-Vicuna, R., Diaz-Gonzalez, F., Gonzalez-Alvaro, I., et al. (1997). Prevention of cytokine-induced changes in leukocyte adhesion receptors by nonsteroidal antiinflammatory drugs from the oxicam family, Arthritis Rheum. 40, 143–153.PubMedGoogle Scholar
  13. Gaucher, A., Jeandel, C., Netter, P., et al. (2002). Limitation of the in vitro whole blood assay for predicting the COX selectivity of NSAIDs in clinical use, Br. J. Clin. Pharmacol. 53, 255–265.PubMedCrossRefGoogle Scholar
  14. Giuliano, F. and Warner, T. D. (1999). Ex vivo assay to determine the cyclooxygenase selectivity of non-steroidal anti-inflammatory drugs, Br. J. Pharmacol. 126, 1824–1830.PubMedCrossRefGoogle Scholar
  15. Hofbauer, R., Speiser, W. and Kapiotis, S. (1998). Ibuprofen inhibits leukocyte migration through endothelial cell monolayers, Life Sci. 62, 1775–1781.PubMedCrossRefGoogle Scholar
  16. Kapiotis, S., Sengoelge, G., Sperr, W. R., et al. (1996). Ibuprofen inhibits pyrogen-dependent expression of VCAM-1 and ICAM-1 on human endothelial cells, Life Sci. 58, 2167–2181.PubMedCrossRefGoogle Scholar
  17. Ku, E. C., Lee, W., Kothari, H. V., et al. (1986). Effect of diclofenac sodium on the arachidonic acid cascade, Am. J. Med. 80, 18–23.PubMedCrossRefGoogle Scholar
  18. Lang, S., Lauffer, L., Clausen, C., et al. (2003). Impaired monocyte function in cancer patients: restoration with a cyclooxygenase-2 inhibitor, FASEB J. 17, 286–288.PubMedGoogle Scholar
  19. Laudanno, O. M., Cesolari, J. A., Esnarriaga, J., et al. (2000). In vivo selectivity of nonsteroidal anti-inflammatory drugs and gastrointestinal ulcers in rats, Dig. Dis. Sci. 45, 1359–1365.PubMedCrossRefGoogle Scholar
  20. Lora, M., Morisset, S., Menard, H. A., et al. (1997). Expression of recombinant human cyclooxygenase isoenzymes in transfected COS-7 cells in vitro and inhibition by tenoxicam, indomethacin and aspirin, Prostaglandins Leukot. Essent. Fatty Acids 56, 36–37.CrossRefGoogle Scholar
  21. Malmsten, C. (1984). Arachidonic acid metabolism and inflammation. A brief introduction, Scand. J. Rheumatol. 53, 31–45.Google Scholar
  22. Martin, S. W., Stevens, A. J., Brennan, B. S., et al. (1994). The six-day-old rat air pouch model of inflammation: characterization of the inflammatory response to carrageenan, J. Pharmacol. Toxicol. Methods 32, 139–147.PubMedCrossRefGoogle Scholar
  23. Maslinska, D. and Gajewski, M. (1999). Some aspects of the inflammatory process, Folia Neuropathol. 36, 199–204.Google Scholar
  24. McGettigan, P. and Henry, D. (2000). Current problems with non-specific COX inhibitors, Curr. Pharm. Des. 6, 1693–1724.PubMedCrossRefGoogle Scholar
  25. Nakatsugi, S., Terada, N., Yoshimura, T., et al. (1996). Effects of nimesulide, a preferential cyclooxygenase-2 inhibitor, on carrageenan-induced pleurisy and stress-induced gastric lesions in rats, Prostaglandins Leukot. Essent. Fatty Acids 55, 395–402.PubMedCrossRefGoogle Scholar
  26. Nielsen, V. G. and Webster, R. O. (1987). Inhibition of human polymorphonuclear leukocyte functions by ibuprofen, Immunopharmacology 13, 61–71.PubMedCrossRefGoogle Scholar
  27. Panara, M. R., Renda, G., Sciulli, M. G., et al. (1999). Dose-dependent inhibition of platelet cyclooxygenase-1 and monocyte cyclooxygenase-2 by meloxicam in healthy subjects, J. Pharmacol. Exp. Ther. 290, 276–280.PubMedGoogle Scholar
  28. Patrignani, P., Panara, M. R., Sciulli, M. G., et al. (1997). Differential inhibition of human prostaglandin endoperoxide synthase-1 and-2 by nonsteroidal anti-inflammatory drugs, J. Physiol. Pharmacol. 48, 623–631.PubMedGoogle Scholar
  29. Penning, T. D., Talley, J. J., Bertenshaw, S. R., et al. (1997). Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-y1] benzenesulfonamide (SC-58635, celecoxib), J. Med. Chem. 40, 1347–1365.PubMedCrossRefGoogle Scholar
  30. Pierce, J. W., Read, M. A., Ding, H., et al. (1996). Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration, J. Immunol. 156, 3961–3969.PubMedGoogle Scholar
  31. Pinheiro, R. M. and Calixto, J. B. (2002). Effect of the selective COX-2 inhibitors, celecoxib and rofecoxib, in rat acute models of inflammation, Inflamm. Res. 51, 603–610.PubMedCrossRefGoogle Scholar
  32. Reicin, A. S., Shapiro, D., Sperling, R. S., et al. (2002). Comparison of cardiovascular thrombotic events in patients with osteoarthritis treated with rofecoxib versus nonselective nonsteroidal anti-inflammatory drugs (ibuprofen, diclofenac, and nabumetone), Am. J. Cardiol. 89, 204–209.PubMedCrossRefGoogle Scholar
  33. Seibert, K., Zhang, Y., Leahy, K., et al. (1994). Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain, Proc. Natl. Acad. Sci. USA 91, 12013–12017.PubMedCrossRefGoogle Scholar
  34. Villegas, I., La Casa, C., de la Lastra, C. A., et al. (2004). Mucosal damage induced by preferential COX-1 and COX-2 inhibitors: role of prostaglandins and inflammatory response, Life Sci. 74, 873–884.PubMedCrossRefGoogle Scholar
  35. Wallace, J. L. (1999). Distribution and expression of cyclooxygenase (COX) isoenzymes, their physiological roles, and the categorization of nonsteroidal anti-inflammatory drugs (NSAIDs), Am. J. Med. 107, 11S–16S.PubMedCrossRefGoogle Scholar
  36. Wallace, J. L., Chapman, K. and McKnight, W. (1999). Limited anti-inflammatory efficacy of cyclo-oxygenase-2 inhibition in carrageenan-air pouch inflammation, Br. J. Pharmacol. 126, 1200–1204.PubMedCrossRefGoogle Scholar

Copyright information

© VSP 2005

Authors and Affiliations

  • Alessandra Gambero
    • 1
  • Tagliane Liza Becker
    • 1
  • Andréa Silva Zago
    • 1
  • Andréa Fermino de Oliveira
    • 1
  • José PedrazzoliJr.
    • 1
  1. 1.Clinical Pharmacology and Gastroenterology UnitSão Francisco University Medical SchoolBragança PaulistaBrazil

Personalised recommendations