, 13:201 | Cite as

Genetic dissection of the signaling pathways that control gastric acid secretion

  • Duan Chen
  • Lennart Friis-Hansen
  • Rolf Håkanson
  • Chun-Mei Zhao


Gastric acid secretion is regulated by endocrine, paracrine and neurocrine signals via at least three pathways, the gastrin-histamine pathway, the CCK-somatostatin pathway and the neural pathway. Genetically-engineered mice, subjected to targeted gene disruption (i.e., knockout mice), have been used to dissect the signaling pathways that are responsible for the complexity of the regulation of acid secretion in vivo. Both gastrin knockout and gastrin/CCK2 receptor knockout mice displayed greatly impaired acid secretion, presumably because of the loss of the gastrin-histamine pathway. Gastrin/CCK double-knockout mice had a relatively high percentage of active parietal cells with a maintained ability to respond with copious acid secretion to pylorus ligation-evoked vagal stimulation and to a histamine challenge. The low acid secretion in gastrin knockout mice and gastrin/CCK2 receptor knockout mice and the restoration of acid secretion in gastrin/CCK double-knockout mice suggest that CCK plays an important role as inhibitor of the parietal cells via the CCK-somatostatin pathway by stimulating the CCK1 receptor of the D cell. In the absence of both the gastrin-histamine and the CCK-somatostatin pathway (as in gastrin/CCK2 receptor double-knockout mice), the control of acid secretion is probably taken over by neural pathways, explaining the high acid output. The observations illustrate the complexity and plasticity of the acid regulatory mechanisms. It seems that one pathway may be suppressed or allowed to dominate over the others depending on the circumstances.

Key words

Acid secretion CCK gastrin knockout mice stomach 


  1. Allen, J. P., Canty, A. J., Schulz, S., et al. (2002). Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of SSTR2 knockout/lacZ knockin mice, J. Comp. Neurol. 454, 329–340.PubMedCrossRefGoogle Scholar
  2. Asahara, M., Kinoshita, Y., Nakata, H., et al. (1994). Gastrin receptor genes are expressed in gastric parietal and enterochromaffin-like cells of Mastomys natalensis, Dig. Dis. Sci. 39, 2149–2156.PubMedCrossRefGoogle Scholar
  3. Chen, D., Zhao, C. M., Dockray, G. J., et al. (2000). Glycine-extended gastrin synergizes with gastrin 17 to stimulate acid secretion in gastrin-deficient mice, Gastroenterology 119, 756–765.PubMedCrossRefGoogle Scholar
  4. Chen, D., Zhao, C. M., Hakanson, R., et al. (2002a). Differentiation of gastric ECL cells is altered in CCK(2) receptor-deficient mice, Gastroenterology 123, 577–585.PubMedCrossRefGoogle Scholar
  5. Chen, D., Zhao, C. M., Håkanson, R., et al. (2002b). Gastric phenotypic abnormality in cholecystokinin 2 receptor null mice, Pharmacol. Toxicol. 91, 375–381.PubMedCrossRefGoogle Scholar
  6. Chen, D., Zhao, C. M., Håkanson, R., et al. (2004a). Absence of the cholecystokinin2 receptor alters the structure and function of gastric parietal and ECL cells, in: Gastrin in the New Millennium, Merchant, J. L., et al. (Eds), pp. 211–223. CURE Foundation, Los Angeles, CA.Google Scholar
  7. Chen, D., Zhao, C. M., Håkanson, R., et al. (2004b). Altered control of gastric acid secretion in gastrin-cholecystokinin double mutant mice, Gastroenterology 126, 476–487.PubMedCrossRefGoogle Scholar
  8. Davison, J. S. and Najafi-Farashah, A. (1987). Vagal inhibition of gastric acid secretion: evidence for cholecystokinin as the inhibitory transmitter in the mouse stomach, Can. J. Physiol. Pharmacol. 65, 1937–1941.PubMedGoogle Scholar
  9. Ekelund, M., Håkanson, R. and Vallgren, S. (1987). Effects of cimetidine, atropine, and pirenzepine on basal and stimulated gastric acid secretion in the rat, Eur. J. Pharmacol. 138, 225–232.PubMedCrossRefGoogle Scholar
  10. El Munshid, H. A., Håkanson, R., Liedberg, G., et al. (1980). Effects of various gastrointestinal peptides on parietal cells and endocrine cells in the oxyntic mucosa of rat stomach, J. Physiol. 305, 249–265.PubMedGoogle Scholar
  11. Friis-Hansen, L., Sundler, F., Li, Y., et al. (1998). Impaired gastric acid secretion in gastrin-deficient mice, Am. J. Physiol. 274, G561–G568.PubMedGoogle Scholar
  12. Friis-Hansen, L. (2001). Lessons from the gastrin and gastrin receptor knockout mice, Scand. J. Clin. Lab. Invest. 234(Suppl.), 41–46.CrossRefGoogle Scholar
  13. Hinkle, K. L. and Samuelson, L. C. (1999). Lessons from genetically engineered animal models. III. Lessons learned from gastrin gene deletion in mice, Am. J. Physiol. 277, G500–G505.PubMedGoogle Scholar
  14. Håkanson, R., Hedenbro, J., Liedberg, G., et al. (1982). Effects of vagotomy on gastric acid secretion in the rat, Acta Physiol. Scand. 115, 135–139.PubMedGoogle Scholar
  15. Håkanson, R., Ding, X. Q., Norlén, P., et al. (1999). CCK2 receptor antagonists: pharmacological tools to study the gastrin-ECL cell-parietal cell axis, Regul. Pept. 80, 1–12.PubMedCrossRefGoogle Scholar
  16. Koh, T. J., Goldenring, J. R., Ito, S., et al. (1997). Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice, Gastroenterology 113, 1015–1025.PubMedCrossRefGoogle Scholar
  17. Langhans, N., Rindi, G., Chiu, M., et al. (1997). Abnormal gastric histology and decreased acid production in cholecystokinin-B/gastrin receptor-deficient mice, Gastroenterology 112, 280–286.PubMedGoogle Scholar
  18. Li, P., Chang, T. M., Coy, D., et al. (2000). Inhibition of gastric acid secretion in rat stomach by PACAP is mediated by secretin, somatostatin, and PGE(2), Am. J. Physiol. 278, G121–G127.Google Scholar
  19. Lindström, E., Björkqvist, M., Boketoft, A., et al. (1997). Neurohormonal regulation of histamine and pancreastatin secretion from isolated rat stomach ECL cells, Regul. Pept. 71, 73–86.PubMedCrossRefGoogle Scholar
  20. Lindström, E., Chen, D., Norlén, P., et al. (2001). Control of gastric acid secretion: the gastrin-ECL cell-parietal cell axis, Comp. Biochem. Physiol. Mol. Integr. Physiol. 128, 505–514.CrossRefGoogle Scholar
  21. Lindström, E. and Håkanson, R. (2001). Neurohormonal regulation of secretion from isolated rat stomach ECL cells: a critical reappraisal, Regul. Rept. 97, 169–180.Google Scholar
  22. Lloyd, K. C., Raybould, H. E. and Walsh, J. H. (1992). Cholecystokinin inhibits gastric acid secretion through type “A” cholecystokinin receptors and somatostatin in rats, Am. J. Physiol. 263, G287–G292.PubMedGoogle Scholar
  23. Mungan, Z., Hammer, R. A., Akarca, U. S., et al. (1995). Effect of PACAP on gastric acid secretion in rats, Peptides 16, 1051–1056.PubMedCrossRefGoogle Scholar
  24. Nagata, A., Ito, M., Iwata, N., et al. (1996). G protein-coupled cholecystokinin-B/gastrin receptors are responsible for physiological cell growth of the stomach mucosa in vivo, Proc. Natl. Acad. Sci. USA 93, 11825–11830.PubMedCrossRefGoogle Scholar
  25. Noble, F., Wank, S. A., Crawley, J. N., et al. (1999). International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors, Pharmacol. Rev. 51, 745–781.PubMedGoogle Scholar
  26. Norlén, P., Bernsand, M., Konagaya, T., et al. (2001). ECL-cell histamine mobilization in conscious rats: effects of locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators, Br. J. Pharmacol. 134, 1767–1777.PubMedCrossRefGoogle Scholar
  27. Ogishima, M., Kaibara, M., Ueki, S., et al. (2000). Z-338 facilitates acetylcholine release from enteric neurons due to blockade of muscarinic autoreceptors in guinea pig stomach, J. Pharmacol. Exp. Ther. 294, 33–37.PubMedGoogle Scholar
  28. Pfeiffer, A., Rochlitz, H., Noelke, B., et al. (1990). Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type, Gastroenterology 98, 218–222.PubMedGoogle Scholar
  29. Prinz, C., Kajimura, M., Scott, D. R., et al. (1993). Histamine secretion from rat enterochromaffinlike cells, Gastroenterology 105, 449–461.PubMedGoogle Scholar
  30. Samuelson, L. C. and Hinkle, K. L. (2003). Insights into the regulation of gastric acid secretion through analysis of genetically engineered mice, Annu. Rev. Physiol. 65, 383–400.PubMedCrossRefGoogle Scholar
  31. Schmidt, W. E. and Schmitz, F. (2004). Genetic dissection of the secretory machinery in the stomach, Gastroenterology 126, 606–609.PubMedCrossRefGoogle Scholar
  32. Schmidt, W. E. and Schmitz, F. (2002). Cellular localization of cholecystokinin receptors as the molecular basis of the periperal regulation of acid secretion, Pharmacol. Toxicol. 91, 351–358.PubMedCrossRefGoogle Scholar
  33. Schubert, M. L., Edwards, N. F., Arimura, A., et al. (1987). Paracrine regulation of gastric acid secretion by fundic somatostatin, Am. J. Physiol. 252, G485–G490.PubMedGoogle Scholar
  34. Tømmerås, K., Bakke, I., Sandvik, A. K., et al. (2002). Rat parietal cells express CCK(2) receptor mRNA: gene expression analysis of single cells isolated by laser-assisted microdissection, Biochem. Biophys. Res. Commun. 297, 335–340.PubMedCrossRefGoogle Scholar
  35. Vallgren, S., Ekelund, M. and Håkanson, R. (1983). Mechanisms of inhibition gastric acid secretin by vagal denervation in the rat, Acta Physiol. Scand. 119, 77–80.PubMedCrossRefGoogle Scholar
  36. Waldum, H. L., Sandvik, A. K., Brenna, E., et al. (1991). The gastrin-histamine sequence in the regulation of gastric acid secretion, Gut 32, 698–701.PubMedGoogle Scholar
  37. Waldum, H. L., Kleveland, P. M., Sandvik, A. K., et al. (2002). The cellular localization of the cholecystokinin 2 (gastrin) receptor in the stomach, Pharmacol. Toxicol. 91, 359–362.PubMedCrossRefGoogle Scholar
  38. Wang, T. C. and Dockray, G. J. (1999). Lessons from genetically engineered animal models. I. Physiological studies with gastrin in transgenic mice, Am. J. Physiol. 277, G6–G11.PubMedGoogle Scholar
  39. Zeng, N., Kang, T., Wen, Y., et al. (1998). Galanin inhibition of enterochromaffin-like cell function, Gastroenterology 115, 330–339.PubMedCrossRefGoogle Scholar
  40. Zeng, N., Kang, T., Lyu, R. M., et al. (1999a). The pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1-R) is expressed on gastric ECL cells: evidence by immunohistochemistry and RT-PCR, Ann. N.Y. Acad. Sci. 865, 147–156.CrossRefGoogle Scholar
  41. Zeng, N., Athmann, C., Kang, T., et al. (1999b). PACAP type I receptor activation regulates ECL cells and gastric acid secretion, J. Clin. Invest. 104, 1383–1391.PubMedCrossRefGoogle Scholar

Copyright information

© Brill Academic Publishers 2005

Authors and Affiliations

  • Duan Chen
    • 1
    • 2
  • Lennart Friis-Hansen
    • 3
  • Rolf Håkanson
    • 4
  • Chun-Mei Zhao
    • 2
  1. 1.Department of SurgeryUniversity Hospital TrondheimTrondheimNorway
  2. 2.Department of Cancer Research and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Department of Clinical BiochemistryRigshospitalet, CopenhagenDenmark
  4. 4.Department of PharmacologyUniversity of LundLundSweden

Personalised recommendations