Skip to main content

Advertisement

Log in

Peroxisome proliferator-activated receptor γ activation counters the detrimental effect of Helicobacter pylori lipopolysaccharide on gastric mucin synthesis

  • Published:
InflammoPharmacology Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor-γ (PPARγ), a member of the subfamily of ligand-dependent nuclear transcription factors, plays a key role in the regulation of the expression of genes associated with inflammation. In this study, using gastric mucosal cells in culture, we assess the role of PPARγ in the disturbances in gastric mucin synthesis and apoptotic processes evoked by Helicobacter pylori lipopolysaccharide (LPS). Exposure of gastric mucosal cells to the LPS led to a concentration-dependent decrease (up to 59.5%) in mucin synthesis, and this effect of the LPS was accompanied by a 6.5-fold increase in apoptosis, induction of COX-2 and NOS-2 protein expression, and the enhancement in PGE2 generation (18.6-fold) and NOS-2 activity (24.1-fold). However, the expression of COX-1 protein was not affected. Activation of PPARγ with a specific synthetic agonist, ciglitazone, countered (up to 90.2%) the LPS-induced reduction in mucin synthesis in a concentration-dependent manner, and this effect of the agent was reflected in a marked decrease in COX-2 and NOS-2 protein expression, reduction (up to 72.4%) in apoptosis and a decline (up to 84.1%) in PGE2 generation and NOS-2 activity (up to 90%). A pronounced prevention (88.2%) in the LPS-induced PGE2 release and the diminished COX-2 protein expression was also attained with the COX-2-selective inhibitor NS-398, but the effect was not associated with the impedance of the LPS inhibitory effect on mucin synthesis. Our findings thus demonstrate that the detrimental influence of H. pylori LPS on gastric mucin synthesis is closely linked to the increase in proapoptotic processes triggered by NOS-2 upregulation, and that PPARγ activation obviates this detrimental effect. Hence, pharmacological manipulation of PPARγ activation may provide therapeutic benefits in countering the disruptive effects of H. pylori on gastric mucosal mucus coat continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Brzozowski, T., Konturek, P. C., Sliwowski, Z., et al. (1997). Lipopolysaccharide of Helicobacter pylori protects gastric mucosa via generation of nitric oxide, J. Physiol. Pharmacol. 48, 699–717.

    Google Scholar 

  • Castrillo, A., de la Heras, B., Hortelano, S., et al. (2001). Inhibition of the nuclear factor кB (NF-кB) pathway by tetracyclic kaurene diterpenes in macrophages, J. Biol. Chem. 276, 15854–15860.

    Google Scholar 

  • Ceruda-Morollon, E., Pieneda-Molina, E., Canada, F. J., et al. (2001). 15-Deoxy-Δ12,14-prostaglandin J2 inhibition of NF-кB-DNA binding through covalent modification of the p50 subunit, J. Biol. Chem. 276, 35530–35536.

    Google Scholar 

  • Clancy, R., Varenika, B., Huang, W., et al. (2000). Nitric oxide synthase/ COX cross-talk: nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production, J. Immunol. 165, 1582–1587.

    Google Scholar 

  • Da Silva, J., Pierrat, B., Mary, J. L., et al. (1997). Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric oxide synthase expression in mouse astrocytes, J. Biol. Chem. 272, 28373–28380.

    Google Scholar 

  • de Boer, W. A. (2000). Topics in Helicobacter pylori infection: focus on a ‘search-and-treat’ strategy for ulcer disease, Scand. J. Gastroenterol. 35 (Suppl. 232), 4–9.

    Google Scholar 

  • DuBois, R. N., Abramson, S. B., Crofford, L., et al. (1998). Cyclooxygenase in biology and disease, FASEB J. 12, 1063–1073.

    Google Scholar 

  • Forman, B. M., Chen, J. and Evans, R. M. (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ, Proc. Natl. Acad. Sci. USA 94, 4312–4317.

    Google Scholar 

  • Fu, S., Ramanujam, K. S., Wong, A., et al. (1999). Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase-2 in Helicobacter pylori gastritis, Gastroen-terology 116, 1319–1329.

    Google Scholar 

  • Gorgoni, B., Caivano, M., Arzimendi, C., et al. (2001). The transcriptionalfactor C/EBPβ is essential for inducible expression of cox-2 gene in macrophages but not in fibroblasts, J. Biol. Chem. 276, 40769–40777.

    Google Scholar 

  • Gupta, R. A., Polk, D. B., Krishna, U., et al. (2001). Activation of peroxisome proliferator-activated receptor γ suppresses nuclear factor kB-mediated apoptosis induced by Helicobacter pylori in gastric epithelial cells, J. Biol. Chem. 276, 31059–31066.

    Google Scholar 

  • Hawkey, C. J. (2002). Cyclooxygenase inhibition: between the devil and the deep blue sea, Gut 50 (Suppl. 3), 25–30.

    Google Scholar 

  • Hughes, F. J., Buttery, L. D. K., Hukkanen, M. V. J., et al. (1999). Cytokine-induced prostaglandin E2 synthesis and cyclooxygenase-2 activity are regulated both by a nitric oxide-dependent and-independent mechanism in rat osteoblasts in vitro, J. Biol. Chem. 274, 1776–1782.

    Google Scholar 

  • Inoue, H., Tanabe, T. and Umesone, K. (2000). Feedback control of cyclooxygenase expression through PPARγ, J. Biol. Chem. 275, 28028–28032.

    Google Scholar 

  • Jackson, L. M., Wu, K. C., Mahida, Y. R., et al. (2000). Cyclooxygenase (COX) 1 and 2 in normal, inflamed, and ulcerated human gastric mucosa, Gut 47, 762–770.

    Google Scholar 

  • Kim, S. J., Ju, J. W., Oh, C. D., et al. (2002). ERK1/ 2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in associationwith p53 and caspse-3, and differentiationstatus, J. Biol. Chem. 277, 1332–1339.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacterio-phage T4, Nature 227, 680–685.

    Google Scholar 

  • Laine, L. (2001). Approaches to nonsteroidal anti-inflammatory drug use in the high-risk patient, Gastroenterology 120, 594–606.

    Google Scholar 

  • Liau, Y. H., Lopez, R. A., Slomiany, A., et al. (1992). Helicobacter pylori effect on the synthesis and secretion of sulfated gastric mucin, Biochem. Biophys. Res. Commun. 184, 1411–1417.

    Google Scholar 

  • Marnett, L. J., Wright, T. L., Crews, B. C., et al. (2000). Regulation of prostaglandin biosynthesis by nitric oxide is revealed by target deletion of inducible nitric-oxide synthase, J. Biol. Chem. 275, 13427–13430.

    Google Scholar 

  • Marshall, B. J. (1994). Helicobacter pylori, Am. J. Gastroenterol. 89, S116–S128.

    Google Scholar 

  • Nakajima, A., Wada, K., Miki, H., et al. (2001). Endogenously PPARγ mediates anti-inflammatory activity in murine ischemia-reperfusioninjury, Gastroenterology 120, 460–469.

    Google Scholar 

  • Piotrowski, J. (1998). Lipopolysaccharidea virulence factor of Helicobacter pylori: effect of antiulcer agents, J. Physiol. Pharmacol. 49, 3–24.

    Google Scholar 

  • Piotrowski, J., Piotrowski, E., Skrodzka, D., et al. (1997). Induction of acute gastritis and epithelial apoptosis by Helicobacter pylori lipopolysaccharide, Scand. J. Gastroenterol. 32, 203–211.

    Google Scholar 

  • Poligone, B. and Baldwin, A. S. (2001). Positive and negative regulation of NF-кB by COX-2, J. Biol. Chem. 276, 38658–38664.

    Google Scholar 

  • Ratovitski, E. A., Bao, C., Quick, R. A., et al. (1999). An inducible nirtric-oxide synthase (NOS)-associated protein inhibits NOS dimerization and activity, J. Biol. Chem. 274, 30250–30257.

    Google Scholar 

  • Romano, M., Ricci, V., Memoli, A., et al. (1998). Helicobacter pylori up-regulates cyclooxygenase-2 mRNA expression and prostaglandin E2 synthesis in MKN 28 gastric mucosal cells in vitro, J. Biol. Chem. 273, 28560–28563.

    Google Scholar 

  • Sakamoto, J., Kimura, H., Moriyama, S., et al. (2000). Activation of human peroxisome proliferator-activated receptor (PPAR) Subtypes by pioglitazone, Biochem. Biophys. Res. Commun. 278, 704–711.

    Google Scholar 

  • Shakibaei, M., Schulze-Tanzil, G., deSouza, P., et al. (2001). Inhibition of mitogen-activated protein kinase induced apoptosis of human chondrocytes, J. Biol. Chem. 276, 1389–1394.

    Google Scholar 

  • Slomiany, B. L. and Slomiany, A. (1991). Role of mucus in gastric mucosal protection, J. Physiol. Pharmacol. 42, 147–161.

    Google Scholar 

  • Slomiany, B. L. and Slomiany, A. (2001). Blockade of p38 mitogen-activatedprotein kinase pathway inhibits inducible nitric oxide synthase and gastric mucosal inflammatory reaction to Helicobacter pylori lipopolysaccharide, Inflammopharmacology 8, 371–382.

    Google Scholar 

  • Slomiany, B. L. and Slomiany, A. (2002). Suppression of gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccharideby peroxisome proliferator-activatedreceptor γ activation, IUBMB Life 53, 303–308.

    Google Scholar 

  • Slomiany, B. L., Liau, H., Lopez, R. A., et al. (1993). Nitecapone effect on the synthesis and secretion of gastric sulfomucin, Gen. Pharmacol. 24, 69–73.

    Google Scholar 

  • Slomiany, B. L., Murty, V. L. N., Piotrowski, E., et al. (1994). Activation of arachidonly phospholipase A2 in prostaglandin-mediatedaction of sucralfate, Gen. Pharmacol. 25, 261–266.

    Google Scholar 

  • Slomiany, B. L., Piotrowski, J. and Slomiany, A. (1997). Anti-Helicobacter pylori activities of ebrotidine, Arzneim. Forsch.-Drug Res. 47, 475–482.

    Google Scholar 

  • Tanaka, T., Kohno, H., Yoshitani, S., et al. (2001). Ligands for peroxisome proliferator-activated receptors α and γ inhibit chemically induced colitis and formation of aberrant crypt foci in rats, Cancer Res. 61, 2424–2428.

    Google Scholar 

  • Warner, T. D., Giuliano, F., Vojnovic, I., et al. (1999). Nonsteroid drug selectivities for cyclo-oxygenase-1 rather that cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis, Proc. Natl. Acad. Sci. USA 96, 7563–7568.

    Google Scholar 

  • Wilson, K. T., Fu, S., Ramanujam, K. S. and Meltzer, S. J. (1998). Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's esophagus and associated adenocarcinomas, Cancer Res. 58, 2929–2934.

    Google Scholar 

  • Xin, X., Yang, S., Kowalski, J., et al. (1999). Peroxisome proliferator-activatedreceptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo, J. Biol. Chem. 274, 9116–9121.

    Google Scholar 

  • Yu, S., Cao, W. Q., Kashireddy, P., et al. (2001). Human peroxisome proliferator-activatedreceptor α.PPARα) supports the induction of peroxisome proliferation in PPARα-deficient mouse liver, J. Biol. Chem. 276, 42485–42491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slomiany, B.L., Slomiany, A. Peroxisome proliferator-activated receptor γ activation counters the detrimental effect of Helicobacter pylori lipopolysaccharide on gastric mucin synthesis. Inflammopharmacology 11, 223–236 (2003). https://doi.org/10.1163/156856003322315578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856003322315578

Navigation