, Volume 9, Issue 1–2, pp 165–169 | Cite as

Role of glycosaminoglycans in inflammation

  • Rebecca Lever
  • Amir Smailbegovic
  • Clive Page


Glycosaminoglycans (GAGs) are large, polyanionic molecules expressed throughout the body, either in association with cell surfaces and extracellular matrices, or stored within intracellular compartments. The GAG heparin is synthesised by and stored exclusively in mast cells, which are strongly associated with allergy and inflammation and is co-released with histamine upon cellular degranulation. The closely related GAG heparan sulphate is expressed, as part of a proteoglycan, on cell surfaces. Most notably, heparan sulphate is associated with the surfaces of vascular endothelial cells, known to be pivotally involved in the control of inflammatory cell adhesion and extravasation. The physiological role of these molecules is not well understood but evidence suggests that they may be involved in limitation of the inflammatory response and, in particular, regulation of cell adhesion and trafficking.


Endothelial Cell Cell Surface Heparin Inflammatory Response Mast Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bar-Ner, M., Eldor, A., Wasserman, L., et al. (1987). Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin, Blood 70, 551–557.Google Scholar
  2. Bartlett, M. R., Underwood, P. A. and Parish, C. R. (1995). Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: Evidence for cytokine dependence and detection of a novel sulfatase, Immunol. Cell Biol. 73, 113–124.Google Scholar
  3. Bârzu, T., Van Rijn, J. L. M. L., Petitou, M., et al. (1986). Endothelial binding sites for heparin. Specificity and role in heparin neutralization, Biochem. J. 238, 847–854.Google Scholar
  4. Bazzoni, G., Nuñez, A. B., Mascellani, G., et al. (1992). Effect of heparin, dermatan sulfate, and related oligo-derivatives on human polymorphonuclear leukocyte functions, J. Lab. Clin. Med. 121, 268–275.Google Scholar
  5. Choay, J., Lormeau, J. C., Petitou, M., et al. (1983). Structure activity relationship in heparin: A synthetic pentasaccharidewith high affinity for antithrombin III and eliciting high anti-Xa activity, Biochem. Biophys. Res. Com. 116, 492.Google Scholar
  6. Damus, P. S., Hicks, M. and Rosenberg, R. D. (1973). Anticoagulant action of heparin, Nature 246, 355–357.Google Scholar
  7. Diamond, M. S., Alon, R., Parkos, C. A., et al. (1995). Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/ CD18), J. Cell Biol. 130, 1473–1482.Google Scholar
  8. Dolowitz, D. A. and Dougherty, T. F. (1960). The use of heparin as an anti-inflammatory agent, Laryngoscope 70, 873–874.Google Scholar
  9. Giuffrè, L., Cy, A.-S., Monai, N., et al. (1997). Monocyte adhesion to activated aortic endothelium: Role of L-selectin and heparan sulfate proteoglycans, J. Cell Biol. 136, 945–956.Google Scholar
  10. Jaques, L. B. (1979). Heparins —anionic polyelectrolyte drugs, Pharmacol. Rev. 31, 99–167.Google Scholar
  11. Klein, N. J., Shennan, G. I., Heyderman, R. S., et al. (1992). Alteration in glycosaminoglycan metabolism and surface charge on human umbilical vein endothelial cells induced by cytokines, endotoxin and neutrophils, J. Cell Sci. 102, 821–832.Google Scholar
  12. Koenig, A., Norgard-Sumnicht, K., Linhardt, R., et al. (1998). Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins, J. Clin. Invest. 101, 877–889.Google Scholar
  13. Kraemer, P. M. (1977). Heparin releases heparan sulfate from the cell surface, Biochem. Biophys. Res. Comm. 78, 1334–1340.Google Scholar
  14. Lasser, E. C., Lang, J. H., Curd, J. G., et al. (1983). The plasma contact system in atopic asthma, J. Allergy Clin Immunol. 72, 83–88.Google Scholar
  15. Lasser, E. C., Simon, R. A., Lyon, S. G., et al. (1987). Heparin-like anticoagulants in asthma, Allergy 42, 619–625.Google Scholar
  16. Lever, R., Hoult, J. R. S. and Page, C. P. (2000). The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leucocytes to vascular endothelium in vitro, Brit. J. Pharmacol. 129, 533–540.Google Scholar
  17. Ley, K., Cerrito, M. and Arfors, K.-E. (1991). Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery venules, Amer. J. Physiol. 260, H1667–H1673.Google Scholar
  18. Lindahl, U., Backstrom, G., Thunberg, L., et al. (1980). Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin, Proc. Natl. Acad. Sci. USA 77, 6551–6555.Google Scholar
  19. Lindahl, U., Thunberg, L., Bäckström, G., et al. (1984). Extension and structural variability of the antithrombin-bindingsequence in heparin, J. Biol. Chem. 259, 12368–12376.Google Scholar
  20. Murch, S. H., MacDonald, T. T., Walker-Smith, J. A., et al. (1993). Disruption of sulphated glycosaminoglycans in intestinal inflammation, Lancet 341, 711–714.Google Scholar
  21. Ofosu, F. A., Modi, G. J., Blajchman, M. A., et al. (1987). Increased sulphation improves the anticoagulant activities of heparan sulphate and dermatan sulphate, Biochem. J. 248, 889–896.Google Scholar
  22. Salas, A., Sans, M., Soriano, A., et al. (2000). Heparin attenuates TNF-alpha induced inflammatory response through a CD11b dependent mechanism, Gut 47, 88–96.Google Scholar
  23. Shute, J.K., Parmar, J., Holgate, S.T., et al. (1997). Urinary glycosaminoglycan levels are increased in acute severe asthma — a role for eosinophil-derived gelatinase B? Int. Arch. Allergy Immunol. 113, 366–367.Google Scholar
  24. Silvestro, L., Viano, I., Macario, M., et al. (1994). Effects of heparin and its desulfated derivatives on leukocyte-endothelialadhesion, Sem. Thromb. Haemost. 20, 254–258.Google Scholar
  25. Skinner, M. P., Lucas, C. M., Burns, G. F., et al. (1991). GMP-140 binding to neutrophils is inhibited by sulfated glycans, J. Biol. Chem. 266, 5371–5374.Google Scholar
  26. Smailbegovic, A., Lever, R. and Page, C. P. (2000). Heparin increases the adhesion of human peripheral blood mononuclear cells to pre-stimulated human umbilical vein endothelial cells without upregulating adhesion molecule expression, Amer. J. Respir. Crit. Care Med. 161, A773.Google Scholar
  27. Smailbegovic, A., Page, C. P. and Lever, R. (1999). Effects of heparin upon adhesion of human peripheral blood mononuclear cells to human stimulated umbilical vein endothelial cells and adhesion molecule expression in vitro, Brit. J. Pharmacol. 128, 249P.Google Scholar
  28. Tangelder, G. J. and Arfors, K.-E. (1991). Inhibition of leukocyte rolling in venules by protamine and sulfated polysaccharides, Blood 7, 1565–1571.Google Scholar
  29. Thunberg, L., Bäckström, G. and Lindahl, U. (1982). Further characterisation of the antithrombin-binding sequence in heparin, Carbohydr. Res. 100, 393–410.Google Scholar
  30. Tyrrell, D. J., Horne, A. P., Holme, K. R., et al. (1999). Heparin in inflammation: Potential therapeutic applications beyond anticoagulation, Adv. Pharmacol. 46, 151–208.Google Scholar
  31. Vlodavsky, I., Mohsen, M., Lider, O., et al. (1994). Inhibition of tumour metastasis by heparanase inhibiting species of heparin, Invasion Metastasis 14, 290–302.Google Scholar
  32. Watt, S. M., Williamson, J., Genevier, H., et al. (1993). The heparin binding PECAM-1 adhesion molecule is expressed by CD34 C hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes, Blood 82, 2649–2663.Google Scholar
  33. Xie, X., Thorlacius, H., Raud, J., et al. (1997). Inhibitory effect of locally administered heparin on leukocyte rolling and chemoattractant-induced firm adhesion in rat mesenteric venules in vivo, Brit. J. Pharmacol. 122, 906–910.Google Scholar

Copyright information

© VSP 2001 2001

Authors and Affiliations

  • Rebecca Lever
    • 1
  • Amir Smailbegovic
    • 1
  • Clive Page
    • 1
  1. 1.Sackler Institute of Pulmonary Pharmacology, Division of Pharmacology and TherapeuticsGKT School of Biomedical Sciences, King's College LondonEngland

Personalised recommendations