Skip to main content
Log in

The Concept of Morphospaces in Evolutionary and Developmental Biology: Mathematics and Metaphors

  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Formal spaces have become commonplace conceptual and computational tools in a large array of scientific disciplines, including both the natural and the social sciences. Morphological spaces (morphospaces) are spaces describing and relating organismal phenotypes. They play a central role in morphometrics, the statistical description of biological forms, but also underlie the notion of adaptive landscapes that drives many theoretical considerations in evolutionary biology. We briefly review the topological and geometrical properties of the most common morphospaces in the biological literature. In contemporary geometric morphometrics, the notion of a morphospace is based on the Euclidean tangent space to Kendall’s shape space, which is a Riemannian manifold. Many more classical morphospaces, such as Raup’s space of coiled shells, lack these metric properties, e.g., due to incommensurably scaled variables, so that these morphospaces typically are affine vector spaces. Other notions of a morphospace, like Thomas and Reif’s (1993) skeleton space, may not give rise to a quantitative measure of similarity at all. Such spaces can often be characterized in terms of topological or pretopological spaces.

The typical language of theoretical and evolutionary biology, comprising statements about the “distance” among phenotypes in an according space or about different “directions” of evolution, is not warranted for all types of morphospaces. Graphical visualizations of morphospaces or adaptive landscapes may tempt the reader to apply “Euclidean intuitions” to a morphospace, whatever its actual topology might be. We discuss the limits of metaphors such as the developmental hourglass and adaptive landscapes that ensue from the geometric properties of the underlying morphospace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberch P (1991) From genes to phenotype: Dynamical systems and evolvability. Genetica 85: 5–11

    Article  Google Scholar 

  • Amari S (1985) Differential-Geometrical Methods in Statistics. Berlin: Springer.

    Book  Google Scholar 

  • Arnold SJ, Pfrender ME, Jones A (2001) The adaptive landscape as a conceptual bridge between micro and macroevolution. Genetica 112–113: 9–32.

    Article  Google Scholar 

  • Bininda-Emonds ORP, Jeffery EJ, Richardson MK (2003) Inverting the hourglass: Quantitative evidence against the phylotypic stage in vertebrate development. Proceedings of the Royal Society London B 270: 341–346.

    Article  Google Scholar 

  • Blackith RE, Reyment RA (1971) Multivariate Morphometrics. London: Academic Press.

    Google Scholar 

  • Bookstein FL (1989) Principal warps: Thin plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 567–585.

    Article  Google Scholar 

  • Bookstein F (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bookstein F (1998) A hundred years of morphometrics. Acta Zoologica Academiae Scientarium Hungaricae 44: 7–59.

    Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical Shape Analysis. New York: Wiley.

    Google Scholar 

  • Duboule D (1994) Temporal colinearity and the phylotypic progression: A basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development (Suppl): 135–142.

  • Fontana W, Schuster P (1998a) Continuity in evolution: On the nature of transitions. Science 280: 1451–1455.

    Article  Google Scholar 

  • Fontana W, Schuster P (1998b) Shaping space: The possible and the attainable in RNA genotype-phenotype mapping. Journal of Theoretical Biology 194: 491–515.

    Article  Google Scholar 

  • Foote M (1993) Contributions of individual taxa to overall morphological disparity. Paleobiology 19: 403–419.

    Google Scholar 

  • Galis F, Metz JAJ (2001) Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. Journal of Experimental Zoology 291: 195–204.

    Article  Google Scholar 

  • Galton F (1888) Co-relations and their measurement, chiefly from anthropometric data. Proceeding of the Royal Society 45: 135–145.

    Article  Google Scholar 

  • Galton F (1907) Classification of portraits. Nature 76: 617–618.

    Article  Google Scholar 

  • Gavrilets S (2004) Fitness Landscapes and the Origin of Species. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Gould SJ (1977) Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Huttegger S, Mitteroecker P (in preparation) The geometry of phenotype spaces: Invariance and meaningfulness.

  • Johnson N (2008) Sewall Wright and the development of shifting balance theory. Nature Education 1(1).

  • Johnson RA, Wichern DW (1998) Applied Multivariate Statistical Analysis. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Kaplan J (2008) The end of the adaptive landscape metaphor? Biology and Philosophy 23: 625–638.

    Article  Google Scholar 

  • Kendall D (1981) The statistics of shape. In: Interpreting Multivariate Data (Barnett V, ed), 75–80. New York: Wiley.

    Google Scholar 

  • Kendall D (1984) Shape manifolds: Procrustean metrics and complex projective spaces. Bulletin of the London Mathematical Society 16: 81–121.

    Article  Google Scholar 

  • Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52: 1363–1375.

    Article  Google Scholar 

  • Manfreda E, Mitteroecker P, Bookstein FL, Schaefer K (2006) Functional morphology of the first cervical vertebra in humans and non-human primates. Anatomical Record, Part B: The New Anatomist 289: 184–194.

    Article  Google Scholar 

  • Marcus LF (1990) Traditional morphometrics. In: Proceedings of the Michigan Morphometrics Workshop (Rohlf FJ, Bookstein FL, eds), 77–122. Ann Arbor, MI: University of Michigan Museums.

    Google Scholar 

  • Marcus LF, Hingst-Zaher E, Zaher H (2000) Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix, Italian Journal of Mammology 11: 27–47.

    Google Scholar 

  • Mardia KV, Bookstein F, Moreton I (2000) Statistical assessement of bilateral symmetry of shapes. Biometrika 87: 285–300.

    Article  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate Analysis. London: Academic Press.

    Google Scholar 

  • McGhee GR (1999) Theoretical Morphology: The Concept and Its Applications. New York: Columbia University Press.

    Google Scholar 

  • McGhee GR (2007) The Geometry of Evolution: Adaptive Landscapes and Theoretical Morphospaces. Cambridge: Cambridge University Press.

    Google Scholar 

  • Milne-Edwards H (1844) Considérations sur quelques principes relatifs à la classification naturelle des animaux. Annales des Sciences Naturelles (Zoologie) (Série 3) 1: 65–99.

    Google Scholar 

  • Mitteroecker P, Bookstein FL (2007) The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology 56: 818–836.

    Article  Google Scholar 

  • Mitteroecker P, Bookstein FL (2008) The evolutionary role of modularity and integration in the hominoid cranium. Evolution 62: 943–958.

    Article  Google Scholar 

  • Mitteroecker P, Bookstein FL (2009) The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution 63: 727–737.

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evolutionary Biology 36: 235–247.

    Article  Google Scholar 

  • Mitteroecker P, Gunz P, Bernhard M, Schaefer K, Bookstein F (2004) Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46: 679–697.

    Article  Google Scholar 

  • Niklas KJ, Kerchner V (1984) Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology 10: 79–101.

    Google Scholar 

  • Pearson K, Morant GM (1934) The Wilkinson head of Oliver Cromwell and its relationship to busts, masks and painted portraits. Biometrika 26: 1–116.

    Article  Google Scholar 

  • Pigliucci M (2008) Sewall Wright’s adaptive landscapes: 1932 vs. 1988. Biology and Philosophy 23: 591–603.

    Article  Google Scholar 

  • Raff R (1996) The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago: University of Chicago Press.

    Google Scholar 

  • Rasskin-Gutman D, Buscalioni AD (1996) Affine transformation as a model of virtual form change for generating morphospaces. In: Advances in Morphometrics (Marcus LF, Corti M, Loy A, Slice D, Naylor G, eds), 169–178. New York: Plenum Press.

    Chapter  Google Scholar 

  • Raup DM (1966) Geometric analysis of shell coiling: General problems. Journal of Paleontology 40: 1178–1190.

    Google Scholar 

  • Raup DM, Michelson A (1965) Theoretical morphology of the coiled shell. Science 147: 1294–1295.

    Article  Google Scholar 

  • Reyment RA (1991) Multidimensional Paleobiology. New York: Pergamon Press.

    Google Scholar 

  • Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: Implications for current theories of evolution and development. Anatomy and Embryology 196: 91–106.

    Article  Google Scholar 

  • Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification 16: 197–223.

    Article  Google Scholar 

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends in Ecology and Evolution 8: 129–132.

    Article  Google Scholar 

  • Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.

    Article  Google Scholar 

  • Rohlf FJ, Sokal RR (1965) Coefficients of correlation and distance in numerical taxonomy. University of Kansas Science Bulletin 45: 3–27.

    Google Scholar 

  • Schindel DE (1990) Unoccupied morphospace and the coiled geometry of gastropods: Architectural constraints or geometric covariation? In: Causes of Evolution (Ross RA, Allmon WD, eds), 270–304. Chicago: University of Chicago Press.

    Google Scholar 

  • Simpson GG (1944) Tempo and Mode in Evolution. New York: Columbia University Press.

    Google Scholar 

  • Slice DE (2001) Landmark coordinates aligned by procrustes analysis do not lie in Kendall’s shape space. Systematic Biology 50: 141–149.

    Article  Google Scholar 

  • Slice DE (2005) Modern Morphometrics in Physical Anthropology. Dordrecht, the Netherlands: Kluwer.

    Book  Google Scholar 

  • Small C (1996) The Statistical Theory of Shape. New York: Springer.

    Book  Google Scholar 

  • Sneath P, Sokal R (1973) Numerical Taxonomy. San Francisco, CA: Freeman.

    Google Scholar 

  • Sokal RR (1961) Distance as a measure of taxonomic similarity. Systematic Zoology 10: 70–79.

    Article  Google Scholar 

  • Stadler PF (2002) Fitness landscapes. In: Biological Evolution and Statistical Physics (Lässig M, Valleriani A, eds), 187–207. Berlin: Springer.

    Google Scholar 

  • Stadler BMR, Stadler PF (2004) The topology of evolutionary biology. In: Modeling in Molecular Biology (Ciobanu G, Rozenberg G, eds), 267–286. Berlin: Springer.

    Chapter  Google Scholar 

  • Stadler BMR, Stadler PF, Shpak M, Wagner GP (2002) Recombination spaces, metrics, and pretopologies. Zeitschrift för Physikalische Chemie 216: 217–234.

    Google Scholar 

  • Stadler BMR, Stadler PF, Wagner G, Fontana W (2001) The topology of the possible: Formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology 213: 241–274.

    Article  Google Scholar 

  • Suppes P, Krantz DH, Luce RD, Tversky A (1989) Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations. New York: Academic Press.

    Google Scholar 

  • Thomas RDK, Reif W-E (1993) The skeleton space: A finite set of organic designs. Evolution 47: 341–360.

    Article  Google Scholar 

  • Thomas RDK, Shearman RM, Stewart GW (2000) Evolutionary exploitation of design options by the first animals with hard skeletons. Science 288: 1239–1242.

    Article  Google Scholar 

  • Thompson DAW (1917) On Growth and Form. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • von Baer KE (1828) Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion. Königsberg, Germany: Bornträger.

    Google Scholar 

  • Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50: 967–976.

    Article  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress of Genetics 1: 356–366.

    Google Scholar 

  • Wright S (1988) Surfaces of selective value revisited. American Naturalist 131: 115–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Mitteroecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitteroecker, P., Huttegger, S.M. The Concept of Morphospaces in Evolutionary and Developmental Biology: Mathematics and Metaphors. Biol Theory 4, 54–67 (2009). https://doi.org/10.1162/biot.2009.4.1.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/biot.2009.4.1.54

Keywords

Navigation