Advertisement

Censored Distributed Space-Time Coding for Wireless Sensor Networks

Open Access
Research Article
Part of the following topical collections:
  1. Distributed Space-Time Systems

Abstract

We consider the application of distributed space-time coding in wireless sensor networks (WSNs). In particular, sensors use a common noncoherent distributed space-time block code (DSTBC) to forward their local decisions to the fusion center (FC) which makes the final decision. We show that the performance of distributed space-time coding is negatively affected by erroneous sensor decisions caused by observation noise. To overcome this problem of error propagation, we introduce censored distributed space-time coding where only reliable decisions are forwarded to the FC. The optimum noncoherent maximum-likelihood and a low-complexity, suboptimum generalized likelihood ratio test (GLRT) FC decision rules are derived and the performance of the GLRT decision rule is analyzed. Based on this performance analysis we derive a gradient algorithm for optimization of the local decision/censoring threshold. Numerical and simulation results show the effectiveness of the proposed censoring scheme making distributed space-time coding a prime candidate for signaling in WSNs.

Keywords

Wireless Sensor Network Decision Rule Error Propagation Local Decision Block Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publisher note

To access the full article, please see PDF.

Copyright information

© S. Yiu and R. Schober. 2008

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations