Advertisement

Superlinear Equations Involving Nonlinearities Limited by Asymptotically Homogeneous Functions

  • Sebastián Lorca
  • Marco Aurelio Souto
  • Pedro Ubilla
Open Access
Research Article
  • 658 Downloads

Abstract

We obtain a solution of the quasilinear equation Open image in new window in Open image in new window , Open image in new window , on Open image in new window . Here the nonlinearity Open image in new window is superlinear at zero, and it is located near infinity between two functions that belong to a class of functions where the Ambrosetti-Rabinowitz condition is satisfied. More precisely, we consider the class of functions that are asymptotically homogeneous of index Open image in new window .

Keywords

Homogeneous Function Quasilinear Equation Nonlinearity Limited Asymptotically Homogeneous Equation Involve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Díaz JI: Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic Equations, Research Notes in Mathematics. Volume 106. Pitman, Boston, Mass, USA; 1985:vii+323.Google Scholar
  2. 2.
    Ambrosetti A, Rabinowitz PH: Dual variational methods in critical point theory and applications. Journal of Functional Analysis 1973,14(4):349–381. 10.1016/0022-1236(73)90051-7MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    de Figueiredo DG, Gossez J-P, Ubilla P: Local superlinearity and sublinearity for indefinite semilinear elliptic problems. Journal of Functional Analysis 2003,199(2):452–467. 10.1016/S0022-1236(02)00060-5MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gidas B, Spruck J: Global and local behavior of positive solutions of nonlinear elliptic equations. Communications on Pure and Applied Mathematics 1981,34(4):525–598. 10.1002/cpa.3160340406MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Azizieh C, Clément P: A priori estimates and continuation methods for positive solutions of-Laplace equations. Journal of Differential Equations 2002,179(1):213–245. 10.1006/jdeq.2001.4029MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    de Figueiredo DG, Yang J: On a semilinear elliptic problem without (PS) condition. Journal of Differential Equations 2003,187(2):412–428. 10.1016/S0022-0396(02)00055-4MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ruiz D: A priori estimates and existence of positive solutions for strongly nonlinear problems. Journal of Differential Equations 2004,199(1):96–114. 10.1016/j.jde.2003.10.021MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    García-Huidobro M, Manásevich R, Ubilla P: Existence of positive solutions for some Dirichlet problems with an asymptotically homogeneous operator. Electronic Journal of Differential Equations 1995,1995(10):1–22.Google Scholar
  9. 9.
    Resnick SI: Extreme Values, Regular Variation, and Point Processes, Applied Probability. A Series of the Applied Probability Trust. Volume 4. Springer, New York, NY, USA; 1987:xii+320.Google Scholar
  10. 10.
    Seneta E: Regularly Varying Functions, Lecture Notes in Mathematics. Volume 508. Springer, Berlin, Germany; 1976:v+112.CrossRefGoogle Scholar
  11. 11.
    Trudinger NS: On Harnack type inequalities and their application to quasilinear elliptic equations. Communications on Pure and Applied Mathematics 1967,20(4):721–747. 10.1002/cpa.3160200406MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Serrin J, Zou H: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Mathematica 2002,189(1):79–142. 10.1007/BF02392645MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lieberman GM: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Analysis 1988,12(11):1203–1219. 10.1016/0362-546X(88)90053-3MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Sebastiáan Lorca et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Sebastián Lorca
    • 1
  • Marco Aurelio Souto
    • 2
  • Pedro Ubilla
    • 3
  1. 1.Instituto de Alta InvestigaciónUniversidad de TarapacáAricaChile
  2. 2.Departamento de Matemática e EstatísticaUniversidade Federal de Campina GrandeCampina GrandeBrazil
  3. 3.Departamento de Matemáticas y Ciencias de la ComputaciónUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations