Advertisement

Frequency and 2D Angle Estimation Based on a Sparse Uniform Array of Electromagnetic Vector Sensors

  • Fei JiEmail author
  • Sam Kwong
Open Access
Research Article

Abstract

We present an ESPRIT-based algorithm that yields extended-aperture two-dimensional (2D) arrival angle and carrier frequency estimates with a sparse uniform array of electromagnetic vector sensors. The ESPRIT-based frequency estimates are first achieved by using the temporal invariance structure out of the two time-delayed sets of data collected from vector sensor array. Each incident source's coarse direction of arrival (DOA) estimation is then obtained through the Poynting vector estimates (using a vector cross-product estimator). The frequency and coarse angle estimate results are used jointly to disambiguate the cyclic phase ambiguities in ESPRIT's eigenvalues when the intervector sensor spacing exceeds a half wavelength. Monte Carlo simulation results verified the effectiveness of the proposed method.

Keywords

Frequency Estimate Poynting Vector Angle Estimate Phase Ambiguity Cyclic Phase 

References

  1. 1.
    Nehorai A, Paldi E: Vector sensor processing for electromagnetic source localization. Proceedings of the 25th Asilomar Conference on Signals, Systems and Computers, November 1991, Pacific Grove, Calif, USA 1: 566–572.Google Scholar
  2. 2.
    Nehorai A, Paldi E: Vector-sensor array processing for electromagnetic source localization. IEEE Transactions on Signal Processing 1994, 42(2):376–398. 10.1109/78.275610CrossRefGoogle Scholar
  3. 3.
    Li J: Direction and polarization estimation using arrays with small loops and short dipoles. IEEE Transactions on Antennas and Propagation 1993, 41(3):379–386. 10.1109/8.233120CrossRefGoogle Scholar
  4. 4.
    Hochwald B, Nehorai A: Identifiability in array processing models with vector-sensor applications. IEEE Transactions on Signal Processing 1996, 44(1):83–95. 10.1109/78.482014CrossRefGoogle Scholar
  5. 5.
    Ho K-C, Tan K-C, Ser W: Investigation on number of signals whose directions-of-arrival are uniquely determinable with an electromagnetic vector sensor. Signal Processing 1995, 47(1):41–54. 10.1016/0165-1684(95)00098-4CrossRefGoogle Scholar
  6. 6.
    Tan K-C, Ho K-C, Nehorai A: Uniqueness study of measurements obtainable with arrays of electromagnetic vector sensors. IEEE Transactions on Signal Processing 1996, 44(4):1036–1039. 10.1109/78.492566CrossRefGoogle Scholar
  7. 7.
    Hochwald B, Nehorai A: Polarimetric modeling and parameter estimation with applications to remote sensing. IEEE Transactions on Signal Processing 1995, 43(8):1923–1935. 10.1109/78.403351CrossRefGoogle Scholar
  8. 8.
    Ho K-C, Tan K-C, Tan BTG: Efficient method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing 1997, 45(10):2485–2498. 10.1109/78.640714CrossRefGoogle Scholar
  9. 9.
    Ho K-C, Tan K-C, Nehorai A: Estimating directions of arrival of completely and incompletely polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing 1999, 47(10):2845–2852. 10.1109/78.790664CrossRefGoogle Scholar
  10. 10.
    Wong KT: Direction finding/polarization estimation—dipole and/or loop triads. IEEE Transactions on Aerospace and Electronic Systems 2001, 37(2):679–684. 10.1109/7.937478CrossRefGoogle Scholar
  11. 11.
    Wong KT, Zoltowski MD: Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation. IEEE Transactions on Antennas and Propagation 1997, 45(10):1467–1474. 10.1109/8.633852CrossRefGoogle Scholar
  12. 12.
    Nehorai A, Tichavsky P: Cross-product algorithms for source tracking using an EM vector sensor. IEEE Transactions on Signal Processing 1999, 47(10):2863–2867. 10.1109/78.790667CrossRefGoogle Scholar
  13. 13.
    Ko CC, Zhang J, Nehorai A: Separation and tracking of multiple broadband sources with one electromagnetic vector sensor. IEEE Transactions on Aerospace and Electronic Systems 2002, 38(3):1109–1116. 10.1109/TAES.2002.1039429CrossRefGoogle Scholar
  14. 14.
    Wong KT: Blind beamforming geolocation for wideband-FFHs with unknown hop-sequences. IEEE Transactions on Aerospace and Electronic Systems 2001, 37(1):65–76. 10.1109/7.913668CrossRefGoogle Scholar
  15. 15.
    Rahamim D, Tabrikian J, Shavit R: Source localization using vector sensor array in a multipath environment. IEEE Transactions on Signal Processing 2004, 52(11):3096–3103. 10.1109/TSP.2004.836456CrossRefGoogle Scholar
  16. 16.
    Wong KT, Zoltowski MD: Self-Initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace. IEEE Transactions on Antennas and Propagation 2000, 48: 1235–1245. 10.1109/8.884492CrossRefGoogle Scholar
  17. 17.
    Wong KT, Zoltowski MD: Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations. IEEE Transactions on Antennas and Propagation 2000, 48(5):671–681. 10.1109/8.855485CrossRefGoogle Scholar
  18. 18.
    Zoltowski MD, Wong KT: ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Transactions on Signal Processing 2000, 48(8):2195–2204. 10.1109/78.852000CrossRefGoogle Scholar
  19. 19.
    Zoltowski MD, Wong KT: Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid. IEEE Transactions on Signal Processing 2000, 48(8):2205–2210. 10.1109/78.852001CrossRefGoogle Scholar
  20. 20.
    Lemma AN, Van Der Veen AJ, Deprettere EF: Analysis of joint angle-frequency estimation using ESPRIT. IEEE Transactions on Signal Processing 2003, 51(5):1264–1283. 10.1109/TSP.2003.810306MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lemma AN, Van Der Veen AJ, Deprettere EF: Joint angle-frequency estimation using multi-resolution ESPRIT. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 4: 1957–1960.Google Scholar
  22. 22.
    Zoltowski MD, Mathews CP: Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling. IEEE Transactions on Signal Processing 1994, 42(10):2781–2794. 10.1109/78.324743CrossRefGoogle Scholar
  23. 23.
    Roy R, Kailath T: ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989, 37(7):984–995. 10.1109/29.32276CrossRefGoogle Scholar
  24. 24.
    Wong KT, Zoltowski MD: High accuracy 2D angle estimation with extended aperture vector sensor arrays. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 5: 2789–2792.Google Scholar

Copyright information

© Ji and Kwong 2006

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Computer ScienceCity University of Hong KongKowloonHong Kong

Personalised recommendations