The sun as a significant agent provoking earthquakes

Abstract

In this paper we provide significant evidence that the sun is a principal agent provoking seismic activity. In particular the aim of the studies presented is to examine the possible relation of the coronal hole (CH) driven high speed solar wind streams (HSSs) with seismicity We performed several statistical studies of solar space and seismological data between 1980 and 2017 as well as a study for a long time interval from the year 1900 until the year 2017. (A1) Concerning the period 1980–2017 among other results we found that the earthquakes (EQs) with M ≥ 83 between 2010–2017 (including the catastrophic earthquakes of Japan 2011 (M91) Sumatra 2012 (M86) and Chile 2015 (M83)) occurred during times of large coronal holes as seen by the Solar Dynamics Observatory (SDO) satellite and were related with CH-driven HSSs observed by the ACE spacecraft several weeks or a few months before the EQ occurrences. (A2) Further research on the hypothesis of the possible HSS-EQ relationship revealed a surprising novel finding: a power spectrum analysis suggests that during the decay phase of the SCC22 and SC23 and at the maximum of SC23 the values of the global seismic (M ≥ 6) energy output shows a periodic variation of ~27 days, which is the mean rotational period of the Sun. (A3) Moderate (not strong) storms in general precede the great EQs. (B) The study of the data for the time interval 1900–2017 revealed that: (1) all of the giant (M ≥ 85) EQs occurred during the decay minimum and the rising phase of the solar cycle or in the maximum phase but at times of a strong reduction of the monthly averaged sunspot number: Chile M95 1960 EQ – Alaska M92 1964 EQ – Sumatra M91 2004 EQ (decay phase) Japan M91 2011 EQ (rising phase of the "strange" SC24) (2) the global energy release of all EQs with magnitudes M ≥ 55 show the highest values during the decay phase of the solar cycle and in particular three years after the solar maximum and (3) a very significant negative correlation (rS = −042p < 10−4) was found between the SSN and the number of earthquakes with M ≥ 7 during the period 1930–2010 during times of moderate and high amplitude solar cycles. (C) Another result of our study is that the comparison of the yearly numbers of great (M ≥ 7) EQs with the SSN fails to provide correct statistical results whereas this is possible for the global seismic energy or the giant EQs. (D) Finally we infer that the case and statistical studies presented in this paper strongly suggest a close relation between CH-associated HSSs and seismic activity. We present some observational evidence that most probably Alfvèn waves mediate the interaction of CH-driven HSSs with seismicity.

References

  1. 1.

    H. Alfvén, Cosmical electrodynamics (Clarendon Press, Oxford, 1950).

  2. 2.

    A.A. Abdu, J.R. de Souza, J.H.A. Sobral, et al., Magnetic Storms Associated Disturbance Dynamo Effects, in The Low and Equatorial latitude Ionosphere, Magnetic Storms Caused by Corotating Streams, Geophysical Research Series 167, Recurrent Magnetic Streams, AGU, 283 (Wiley, 2006).

  3. 3.

    V.I. Afanas’yeva, Geomagn. Aeron 3, 561 (1963)

    Google Scholar 

  4. 4.

    M. Akhoondzadeh, M. Parrot, M.R. Saradjian, Nat. Hazards Earth Syst. Sci. 10, 7 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    G.C. Anagnostopoulos, A. Papandreou, Nat. Hazards Earth Syst. Sci. 12, 1551 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    G.C. Anagnostopoulos, E. Vassiliadis, S. Pulinets, Ann. Geophys. 55, 21 (2012)

    Google Scholar 

  7. 7.

    G.C. Anagnostopoulos, S.A. Menesidou, V.G. Vassiliadis, A. Rigas, Correlation between Solar Energetic Particle events and Earth’s surface Temperature in North-East USA 12th HelAS_Conference (Thessaloniki, 2015), https://www.researchgate.net/publication/309490064_Correlation_between_Solar_Energetic_Particle_events_and_Earth’s_surface_Temperature_in_North-East_USA

  8. 8.

    M.A. Athanasiou, G.C. Anagnostopoulos, C.N. David, et al., Res Geophys. 4, 5001 (2014)

    Google Scholar 

  9. 9.

    M.A. Athanasiou, G.C. Anagnostopoulos, A.C. Iliopoulos, et al., Nat. Hazards Earth Syst. Sci. 11, 1091 (2011)

    ADS  Article  Google Scholar 

  10. 10.

    B. Badruddin, A. Kumar, Solar Phys. 290, 127 (2015)

    Article  Google Scholar 

  11. 11.

    B. Badruddin, F. Mustajab, M. Derouich, Adv. Space Res. 62, 765 (2018)

    ADS  Article  Google Scholar 

  12. 12.

    V. Bakhmutov, F. Sedova, T. Mozgovaya, Publ. Inst. Geophys. Pol. Acad. Sci. 43, 931 (2007)

    Google Scholar 

  13. 13.

    A. Barnes, in Solar-Terrestrial Physics: Principles and Theoretical Foundations, edited by R.L. Carovillano and J.M. Forbes (D. Reidel Publishing Company, Dordrecht, 1983), 155–199.

  14. 14.

    S. Basu, J. Phys.: Conf. Ser. 440, 012001 (2013)

    Google Scholar 

  15. 15.

    J. Vencloviene, R. Babarskiene, R. Slapikas, Nat. Hazards 65, 1 (2013)

    Article  Google Scholar 

  16. 16.

    P. Bernard, Compt. Rend. 250, 2738 (1960) (in French)

    Google Scholar 

  17. 17.

    D. Biesecker, NOAA/Space Environ. Center, 1–10, 2011

  18. 18.

    J.E. Borovsky, M.H. Denton, J. Geophys. Res. 111, A07S08 (2006)

    ADS  Google Scholar 

  19. 19.

    G.E. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, Time Series Analysis: Forecasting and Control (John Wiley and Sons, New York, 2015)

  20. 20.

    D.R. Brillinger, J. R. Stat. Soc. B 38, 60 (1976)

    Google Scholar 

  21. 21.

    D.R. Brillinger, Time Series: Data Analysis and Applications (Holt Rinehart and Winston Inc., New York, 1981)

  22. 22.

    W.H. Campbell, J. Geophys. Res. 114, A05307 (2009)

    ADS  Google Scholar 

  23. 23.

    C. Chatfield, The Analysis of Time Series: An Introduction, 5th edn. (Chapman & Hall London, 1996)

  24. 24.

    M.A. Clilverd, C.J. Rodger, R.M. Millan, et al., J. Geophys. Res. 112, A12206 (2007)

    ADS  Google Scholar 

  25. 25.

    R.S. Cranmer, Liv. Rev. Sol. Phys. 6, 3 (2009)

    Google Scholar 

  26. 26.

    M. Denton, et al., EOS Trans., AGU 89, 62 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    M. Dikpati, P.A. Gilman, G. Toma, R. Ulrich, Geophys. Res. Lett. 37, 14 (2010)

    Google Scholar 

  28. 28.

    L. Doda, Air Fleet. 3, 56 (2001)

    Google Scholar 

  29. 29.

    G. Duma, Y. Ruzhin, Nat. Hazards Earth Syst. Sci. 3, 171 (2003)

    ADS  Article  Google Scholar 

  30. 30.

    F. Freund, S. Pilorz, in in The Frontier of EQ Prediction Studies, edited by M. Hayakawa (2012), pp. 468–508.

  31. 31.

    F.T. Freund, G. Ouillon, J. Scoville, D. Sornette, Eur. Phys. J. Special Topics 230, 7 (2021)

    Google Scholar 

  32. 32.

    C. Fidani, Terr. Atmos. Ocean Sci. 29, 117 (2018)

    Article  Google Scholar 

  33. 33.

    F.T. Freund, Acta Geophys. 58, 719 (2010)

    ADS  Google Scholar 

  34. 34.

    F.T. Freund, J. Asian Earth Sci. 41, 383 (2011)

    ADS  Article  Google Scholar 

  35. 35.

    F.T. Freund, Acta Geophys. 61, 775 (2013)

    ADS  Article  Google Scholar 

  36. 36.

    A.C. Fraser-Smith, et al., Geophys. Res. Lett. 17, 1465 (1990)

    ADS  Article  Google Scholar 

  37. 37.

    A. Ghasemi, S. Zahediasl, Int. J. Endocrinol. Metab. 10, 486 (2012)

    Article  Google Scholar 

  38. 38.

    M. Gerontidou, H. Mavromichalaki, T. Daglis, Sol. Phys. 293, 131 (2018)

    ADS  Article  Google Scholar 

  39. 39.

    J. Giacalone, R.A. Mewaldt, Why are there fewer large SEP events this solar cycle?, American Geophysical Union Fall General Assembly Abstract, idSH32A-05 (2016)

  40. 40.

    J.T. Gosling, D.J. McComas, J.L. Phillips, et al., J. Geophys. Res. 96, 7831 (1991)

    ADS  Article  Google Scholar 

  41. 41.

    M.N. Gousheva, K.Y. Georgiva, B.B. Kirov, et al., On the relation between solar activity and seismicity, in Proceedings of the International Conference on Recent Advances in Space Technologies RAST ‘03 Istanbul Turkey (2003), pp. 236–240

  42. 42.

    R.S. Granmer, Living Rev. Solar Phys. 6, 3 (2009)

    ADS  Google Scholar 

  43. 43.

    L.J. Gray, J. Beer, M. Geller, et al., Rev. Geophys. 48, 1 (2010)

    Article  Google Scholar 

  44. 44.

    P.J. Green, B.W. Silverman, Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach (Chapman and Hall London, 1994)

  45. 45.

    T. Gulyaeva, Development Earth Sci. 2, 14 (2014)

    Google Scholar 

  46. 46.

    B. Gutenberg, C.F. Richter, Ann. Geofis. 9, 1 (1956)

    Google Scholar 

  47. 47.

    M. Hayakawa, Sensors 7, 1141 (2007)

    Article  Google Scholar 

  48. 48.

    M. Hayakawa, R. Kawate, O.A. Molchanov, et al., Geophys. Res. Lett. 23, 241 (1996)

    ADS  Article  Google Scholar 

  49. 49.

    M. Hayakawa, K. Hattori, K. Ohta, Sensors 7, 1108 (2007)

    Article  Google Scholar 

  50. 50.

    D.J. Herdiwijaya, J. Arif, M.Z. Nurzaman, AIP Conf. Proc. 1677, 050003 (2015)

    Article  Google Scholar 

  51. 51.

    J.R. Herman, R.A. Goldberg, Sun Weather and Climate (Dover Pub Inc., New York, 1978)

  52. 52.

    Y.-Y. Ho, J.-Y. Liu, M. Parrot, et al., Nat. Hazards Earth Syst. Sci. 13, 3281 (2013)

    ADS  Article  Google Scholar 

  53. 53.

    J. Jakubcova, M. Pick, Ann. Geophys. 5, 135 (1987)

    Google Scholar 

  54. 54.

    Y. Kamide, K. Kusano, Space Weather 11, 140 (2013)

    ADS  Article  Google Scholar 

  55. 55.

    Y. Kamide, K. Kusano, Space Weather 13, 365 (2015)

    ADS  Article  Google Scholar 

  56. 56.

    R.P. Kane, Adv. Space Res. 39, 189 (2007)

    ADS  Article  Google Scholar 

  57. 57.

    A. Kavanagh, M. Denton, Astron. & Geophys. 48, 6.24 (2007)

    Article  Google Scholar 

  58. 58.

    L. Kepko, H.E. Spence, H. Singer, Geophys. Res. Lett. 29, 39.1 (2002)

    Article  Google Scholar 

  59. 59.

    V.E. Khain, E.N. Kalilov, Trans. Inter. Acad. Sci. 3, 217 (2008)

    Google Scholar 

  60. 60.

    E.K.J. Kilpua, A. Balogh, R. von Steiger, et al., Space Sci. Rev. 212, 1159 (2017)

    Article  Google Scholar 

  61. 61.

    K.-H. Kim, C.A. Cattell, D.-H. Lee, et al., J. Geophys. Res. 107, 1406 (2002)

    Article  Google Scholar 

  62. 62.

    G.M. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995)

  63. 63.

    V.V. Kormiltsev, N.P. Kostrov, A.N. Ratushnyak, et al., The influence of electro-osmotic pressure generated by geomagnetic disturbances on the evolution of seismotectonic processx, in Electromagnetic Lithosphere-Atmosphere-Ionosphere Coupling, M. Nayakawa, O.A. Molchanov (Terrapub, Tokyo, 2002), pp. 203–207

  64. 64.

    M. Kovalyov, S. Kovalyov, arXiv:1403.5728v2 [physics.gen-ph] (2015)

  65. 65.

    K. Kudela, M. Storini, M.Y. Hofer, et al., Space Sci. Rev. 93, 153 (2000)

    ADS  Article  Google Scholar 

  66. 66.

    S.E. Kozyra, et al., Magnetic Storms Caused by Corotating Streams Geophysical Research Series, Recurrent Magnetic Streams, AGU 167 (2006).

  67. 67.

    D. Lario, R.B. Decker, S. Livi, et al., J. Geophys. Res. 110, A09S11 (2005)

    Google Scholar 

  68. 68.

    D. Lario, R.B. Decker, E.C. Roelof, et al., J. Phys.: Conf. Ser. 900, 012012 (2017)

    Google Scholar 

  69. 69.

    J.J. Love, J.N. Thomas, Geophys. Res. Lett. 40, 1165 (2013)

    ADS  Article  Google Scholar 

  70. 70.

    C. Lowder, J. Qiu, R. Leamon, Solar Phys. 292, 18 (2017)

    ADS  Article  Google Scholar 

  71. 71.

    R.L. McPherron, Magnetotails in the Solar System (2015)

  72. 72.

    C.J. Qiu, R. Leamon, Sol. Phys. 292, 18 (2017)

    ADS  Article  Google Scholar 

  73. 73.

    J.G. Luhmann, C.O. Lee, Y. Li, et al., Sol. Phys. 256, 285 (2009)

    ADS  Article  Google Scholar 

  74. 74.

    L.N. Makarova, A.V. Shirochkov, On the connection between the Earth’s magnetosphere magnetopause position and the earthquakes occurrence, Abstracts of XXVI General Assembly LJRSI (Canada, Toronto, 1999)

  75. 75.

    H. Mavromichalaki, A. Vassilaki, E. Marmatsouri, Sol. Phys. 115, 345 (1988)

    ADS  Article  Google Scholar 

  76. 76.

    R.L. Mcpherron, Surv. Geophys. 26, 545 (2005)

    ADS  Article  Google Scholar 

  77. 77.

    A.A. Melkumyna, A.V. Belov, M.A. Abunina, et al., Geomagn. Aeron. 58, 154 (2018)

    ADS  Article  Google Scholar 

  78. 78.

    R.A. Mewaldt, G. Li, C. Cohen, et al., Why are Solar Energetic Particle Intensities so Much Lower in Solar Cycle 24 Especially at High Energies? American Geophysical Union Fall General Assembly abstract idSH41D-01 (2016)

  79. 79.

    D. Nandy, et al., Nature 471, 80 (2011)

    ADS  Article  Google Scholar 

  80. 80.

    F. Nemec, O. Santolk, M. Parrot, J. Geophys. Res. 114, 72 (2009)

    Google Scholar 

  81. 81.

    S. Odintsov, et al., Phys. Chem. Earth 31, 88 (2006)

    ADS  Article  Google Scholar 

  82. 82.

    S.D. Odintsov, G.S. Ivanov-Klodonyi, K. Gergieva, Bull. Russ. Acad. Sci. Phys. 71, 593 (2007)

    Article  Google Scholar 

  83. 83.

    K. Ohta, K. Umeda, N. Watanabe, et al., Nat. Hazards Earth Syst. Sci. 1, 37 (2001)

    ADS  Article  Google Scholar 

  84. 84.

    S.J. Palmer, M.J. Rycroft, M. Cermack, Surveys Geophys. 27, 557 (2006)

    ADS  Article  Google Scholar 

  85. 85.

    S.C. Park, J. Mori, J. Geophys. Res. 112, B03302 (2007)

    ADS  Google Scholar 

  86. 86.

    E.N. Parker, Astrophys. J. 134, 20 (1961)

    ADS  Article  Google Scholar 

  87. 87.

    S. Patsourakos, M.K. Georgoulis, A. Vourlidas, et al., Astrophys. J. 817, 1 (2016)

    Article  Google Scholar 

  88. 88.

    W. Dean Pesnell, B.J. Thompson, P.C. Chamberlin, Solar Phys. 275, 3 (2012)

    ADS  Article  Google Scholar 

  89. 89.

    J.L. Phillips, S.J. Bame, W.C. Feldman, et al., Science 19, 1030 (1995)

    ADS  Article  Google Scholar 

  90. 90.

    V.J. Pizzo, J. Geophys. Res. 83, 5563 (1978)

    ADS  Article  Google Scholar 

  91. 91.

    J. Pap, P. Fox (Eds.), , Solar variability and its Effects on Climate (Geophysical Monograph, 143, 2004)

  92. 92.

    S.M. Potirakis, T. Asano, M. Hayakawa, Entropy 20, 3 (2018)

    Article  Google Scholar 

  93. 93.

    P. Prikryl, D.B. Muldrew, G.J. Sofko, High-speed solar wind auroral electrojets and atmospheric gravity waves: a link to the Earth’s atmosphere, in Proceedings International Solar Cycle Studies Symposium “Solar Variability as an Input to the Earth Environment” (Tatranska Lomnica Slovakia ESA SP, 2003), pp. 23–28

  94. 94.

    P. Prikryl, R. Ghoddousi-Fard, E.G. Thomas, et al., Ann. Geophys. 33, 637 (2015)

    ADS  Article  Google Scholar 

  95. 95.

    S. Pulinets, K. Boyarchuk, Ionospheric Precursors of Earthquakes (Springer Science & Business Media, 2004)

  96. 96.

    N.M. Razali, Y.B. Wah, J. Stat. Modeling & Analytics 2, 21 (2011)

    Google Scholar 

  97. 97.

    R. Rekapalli, Nat. Hazards Earth Syst. Sci. 2, 2851 (2014)

    Article  Google Scholar 

  98. 98.

    C.T. Russell, M. Ginskey, S. Petrinec, G. Le, Geophys. Res. Lett. 19, 1227 (1992)

    ADS  Article  Google Scholar 

  99. 99.

    Y. Ruzhin, C. Nomicos, Nat. Hazards 40, 573 (2007)

    Article  Google Scholar 

  100. 100.

    I.G. Richardson, Liv. Rev. Sol. Phys. 1, 15 (2018)

    Google Scholar 

  101. 101.

    I.G. Richardson, H.V. Cane, Space Weather 9, S07005 (2011)

    ADS  Article  Google Scholar 

  102. 102.

    I.G. Richardson, H.V. Cane, J. Space Weather Space Clim. 2, A02 (2012)

    Google Scholar 

  103. 103.

    I.G. Richardson, H.V. Cane, J. Space Weather Space Clim. 2, A01 (2012)

    Google Scholar 

  104. 104.

    A.G. Rigas, J. Time Ser. Anal. 13, 441 (1992)

    MathSciNet  Article  Google Scholar 

  105. 105.

    E. Robbrecht, S. Patsourakos, A. Vourlidas, ApJ 701, 283 (2009)

    ADS  Article  Google Scholar 

  106. 106.

    D.V. Sarafopoulos, J. Atmos. Solar. Terr. Phys. 67, 1427 (2005)

    ADS  Article  Google Scholar 

  107. 107.

    I.P. Shestopalov, E.P. Kharin, Russ. J. Earth Sci. 14, ES1002 (2014)

    Article  Google Scholar 

  108. 108.

    N.F. Sidiropoulos, G.C. Anagnostopoulos, V. Rigas, Nat. Hazards Earth Syst. Sci. 11, 1901 (2011)

    ADS  Article  Google Scholar 

  109. 109.

    E.C. Stone, L.F. Burlaga, A.C. Cummings, et al., The advanced composition explorer Particle Astrophysics – The NASA Cosmic Ray Program for the 1990s and Beyond (1990), https://ntrs.nasa.gov/search.jsp?R=19920037908.

  110. 110.

    J.F. Simpson, Earth Planet. Sci. Lett. 3, 417 (1967)

    ADS  Article  Google Scholar 

  111. 111.

    E.J. Smith, J.H. Wolfe, Geophys. Res. Lett. 3, 137 (1976)

    ADS  Article  Google Scholar 

  112. 112.

    G.A. Sobolev, N.A. Zakrzhevskaya, E.P. Kharin, Phys. Solid Earth Russ. Acad. Sci. 11, 62 (2001)

    Google Scholar 

  113. 113.

    G.A. Sobolev, I.P. Shestopalov, E.P. Kharin, Izvestiya Phys. Solid Earth 34, 603 (1998)

    ADS  Google Scholar 

  114. 114.

    A.D. Sytinskiy, Geomagn. Aeron. 3, 120 (1963)

    ADS  Google Scholar 

  115. 115.

    A.D. Sytinskii, Izvestiya Phys. Solid Earth 25, 86 (1989)

    ADS  Google Scholar 

  116. 116.

    A.D. Sytinskii, Geomagn. Aeron 37, 138 (1997)

    Google Scholar 

  117. 117.

    V. Straser, G. Cataldi, New Conc. Global Tect. J. 3, 141 (2015)

    Google Scholar 

  118. 118.

    M. Tavares, A. Azevedo, Nat. Sci. 3, 436 (2013)

    Google Scholar 

  119. 119.

    M. Tokumaru, M. Kojima, K. Fujiki, J. Geophys. Res. 115, A04102 (2010)

    ADS  Google Scholar 

  120. 120.

    V. Tramutoli, R. Corrado, C. Filizzola, et al., B. Geofis. Teor. Appl. 56, 167 (2015)

    Google Scholar 

  121. 121.

    K. Tsinganos, Solar and Astrophysical Magnetohydrodynamic Flows (Kluwer, 1995)

  122. 122.

    B.T. Tsurutani, E. Echer, W.D. Gonzalez, J. Atmos. Sol. Terr. Phys. 73, 164 (2011)

    ADS  Article  Google Scholar 

  123. 123.

    B.T. Tsurutani, R.L. McPherron, W.D. Gonzalez, et al., Geophys. Res. Ser. 167, 1 (2006)

    Google Scholar 

  124. 124.

    B.T. Tsurutani, B.E. Goldstein, E.J. Smith, et al., Planet Space Sci. 38, 109 (1990)

    ADS  Article  Google Scholar 

  125. 125.

    B.T. Tsurutani, W.D. Gonzalez, Planet Space Sci. 35, 405 (1987)

    ADS  Article  Google Scholar 

  126. 126.

    R. Turner, Space Weather 9, S04004 (2011)

    ADS  Google Scholar 

  127. 127.

    K. U-Yen, NCGT J. 3, 405 (2015)

    Google Scholar 

  128. 128.

    N. Urata, G. Duma, F. Freund, Open J. Earthq. Res. 7, 39 (2018)

    Article  Google Scholar 

  129. 129.

    P.I.Y. Velinov, Bulg. Geofiz. Spis. 1, 51 (1975)

    ADS  Google Scholar 

  130. 130.

    U. Villante, P. Tiberi, J. Geophys. Res. Space Phys. 121, 4300 (2016)

    ADS  Article  Google Scholar 

  131. 131.

    S. Watari, Sol. Phys. 293, 23 (2018)

    ADS  Article  Google Scholar 

  132. 132.

    D.F. Webb, R.A. Howard, J. Geophys. Res. 99, 4201 (1994)

    ADS  Article  Google Scholar 

  133. 133.

    D.J. Williams, J. Geophys. Res. 71, 1815 (1966)

    ADS  Article  Google Scholar 

  134. 134.

    B.A. Yakovlev, Astron. Sbornik Nos 3–4, 152 (1960)

    Google Scholar 

  135. 135.

    S. Yashiro, N. Gopalswamy, G. Michalek, et al., J. Geophys. Res. 109, A07105 (2004)

    ADS  Google Scholar 

  136. 136.

    H.-Y. Yen, C.-H. Chen, Y.-H. Yeh, et al., Earth Planets Space 56, 39 (2004)

    ADS  Article  Google Scholar 

  137. 137.

    G. Xystouris, E. Sigala, H. Mavromichalaki, Sol. Phys. 289, 995 (2014)

    ADS  Article  Google Scholar 

  138. 138.

    N.A. Zakrzhevskaya, G.A. Sobolev, Phys. Solid Earth Russ. Acad. Sci. 4, 3 (2002)

    Google Scholar 

  139. 139.

    X. Zhang, X. Shen, M. Parrot, Nat. Hazards Earth Syst. Sci. 12, 75 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Anagnostopoulos.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anagnostopoulos, G., Spyroglou, I., Rigas, A. et al. The sun as a significant agent provoking earthquakes. Eur. Phys. J. Spec. Top. 230, 287–333 (2021). https://doi.org/10.1140/epjst/e2020-000266-2

Download citation