Skip to main content
Log in

Effects of electromagnetic induction on signal propagation and synchronization in multilayer Hindmarsh-Rose neural networks

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The feed-forward neural networks are the basis and have been widely applied on modern deep learning models, wherein connection strength between neurons plays a critical role in weak signal propagation and neural synchronization. In this paper, a four-variable Hindmarsh–Rose (HR) neural model is presented by introducing an additive variable as magnetic flow which changes the membrane potential via a memristor. The improved HR neurons in the feed-forward multilayer (four and eight layers) networks are investigated. The effects of electromagnetic radiation, synaptic weight and noise intensity on the propagation of the subthreshold excitatory postsynaptic current (EPSC) signal and the neural synchronization are discussed. It is found that when the system is in a weak magnetic field, the subthreshold EPSC signal can be successfully transmitted to the post-layers. Moreover, the neural synchronization of each layer is affected by electromagnetic radiation in the network, and with the help of noise the constant input current will transmit to the post-layers in a stable periodic synchronous form. Our findings provide a possible mechanism for enhancing the subthreshold signal propagation and triggering the neural synchronization in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.Q. Guo, C.G. Li, J. Comput. Neurosci. 30, 567 (2011)

    Article  MathSciNet  Google Scholar 

  2. G.A. Babu, S.N. Bhukya, R.S. Kumar, in Proceedings of the 8th International Conference on Computer Science & Education, ICCSE 2013, (IEEE, 2013), p. 181

  3. M. Diesmann, M.O. Gewaltig, A. Aertsen, Nature 402, 529 (1999)

    Article  ADS  Google Scholar 

  4. S. Moldakarimov, M. Bazhenov, T.J. Sejnowski, Proc. Natl. Acad. Sci. 112, 2545 (2015)

    Article  ADS  Google Scholar 

  5. H.T. Wang, Y. Chen, Physica A 462, 321 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Masoliver, C. Masoller, Sci. Rep. 8, 8276 (2018)

    Article  ADS  Google Scholar 

  7. Y. Yao, C. Ma, C. Wang, M. Yi, R. Gui, Phys. A 492, 1247 (2018)

    Article  MathSciNet  Google Scholar 

  8. L.T. Arredondo, C.A. Perez, PLoS One 12, e0186932 (2017)

    Article  Google Scholar 

  9. M. Perc, Phys. Rev. E 72, 016207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Sci. Rep. 6, 30914 (2016)

    Article  ADS  Google Scholar 

  11. X.J. Sun, J.Z. Lei, M. Perc, J. Kurths, G.R. Chen, Chaos 21, 016110 (2011)

    Article  ADS  Google Scholar 

  12. S. Majhi, M. Perc, D. Ghosh, Chaos 27, 073109 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Teramae, T. Fukai, Biol. Cybern. 99, 105 (2008)

    Article  Google Scholar 

  14. S. Goedeke, M. Diesmann, New J. Phys. 10, 15007 (2008)

    Article  Google Scholar 

  15. Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Phys. Rev. E 80, 026206 (2009)

    Article  ADS  Google Scholar 

  16. D.Q. Guo, C.G. Li, Phys. Rev. E 79, 051921 (2009)

    Article  ADS  Google Scholar 

  17. J. Ma, L. Mi, P. Zhou, Y. Xu, T. Hayat, Appl. Math. Comput. 307, 321 (2017)

    MathSciNet  Google Scholar 

  18. Y. Asai, A.E.P. Villa, Brain Res. 1434, 17 (2012)

    Article  Google Scholar 

  19. M. Yi, L.J. Yang, Phys. Rev. E 81, 061924 (2010)

    Article  ADS  Google Scholar 

  20. M. Ge, Y. Jia, J.B. Kirunda, Y. Xu, J. Shen, L. Lu, Y. Liu, Q. Pei, X. Zhan, L. Yang, Neurocomputing 320, 60 (2018)

    Article  Google Scholar 

  21. L. Lu, Y. Jia, J.B. Kirunda, Y. Xu, M. Ge, Q. Pei, L. Yang, Nonlinear Dyn. 95, 1673 (2019)

    Article  Google Scholar 

  22. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  23. J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017)

    Article  Google Scholar 

  24. M. Ge, Y. Xu, Z. Zhang, Y. Peng, W. Kang, L. Yang, Y. Jia, Eur. Phys. J. Special Topics 227, 799 (2018)

    Article  ADS  Google Scholar 

  25. J. Ma, F. Wu, C. Wang, Int. J. Mod. Phys. B 31, 1650251 (2017)

    Article  ADS  Google Scholar 

  26. Y. Xu, Y. Jia, M. Ge, L. Lu, L. Yang, X. Zhan, Neurocomputing 283, 196 (2018)

    Article  Google Scholar 

  27. Z. Rostami, S. Jafari, M. Perc, M. Slavinec, Nonlinear Dyn. 94, 679 (2018)

    Article  Google Scholar 

  28. M. Ge, Y. Jia, Y. Xu, L. Lu, H. Wang, Y. Zhao, Appl. Math. Comput. 352, 136 (2019)

    MathSciNet  Google Scholar 

  29. Y. Xu, Y. Jia, H. Wang, Y. Liu, P. Wang, Y. Zhao, Nonlinear Dyn. 95, 3237 (2019)

    Article  Google Scholar 

  30. D. Hansel, G. Mato, C. Meunier, Europhys. Lett. 23, 367 (1993)

    Article  ADS  Google Scholar 

  31. A. Destexhe, Z.F. Mainen, T.J. Sejnowski, J. Comput. Neurosci. 1, 195 (1994)

    Article  Google Scholar 

  32. L. Yang, Y. Jia, M. Yi, ICNC 2, 819 (2010)

    Google Scholar 

  33. X. Pei, L. Wilkens, F. Moss, Phys. Rev. Lett. 77, 4679 (1996)

    Article  ADS  Google Scholar 

  34. S. Wang, W. Wang, F. Liu, Phys. Rev. Lett. 96, 018103 (2006)

    Article  ADS  Google Scholar 

  35. P. Parmananda, G. Santos, M. Rivera, K. Showalter, Phys. Rev. E 71, 031110 (2005)

    Article  ADS  Google Scholar 

  36. M. Stimberg, T. Hoch, K. Obermayer, Neurocomputing 70, 1824 (2007)

    Article  Google Scholar 

  37. Y. Wang, J. Ma, Y. Xu, F. Wu, P. Zhou, Int. J. Bifurc. Chaos 27, 1750030 (2017)

    Article  Google Scholar 

  38. M. Ge, Y. Jia, Y. Xu, L. Yang, Nonlinear Dyn. 91, 515 (2018)

    Article  Google Scholar 

  39. B. Bao, A. Hu, Q. Xu, H. Wu, M. Chen, Nonlinear Dyn. 92, 1695 (2018)

    Article  Google Scholar 

  40. L.L. Lu, Y. Jia, Y. Xu, M.Y. Ge, L.J. Yang, X. Zhan, Sci. China Technol. Sci. 62, 427 (2019)

    Article  Google Scholar 

  41. Y. Xu, Y. Jia, J.B. Kirunda, J. Shen, M. Ge, L. Lu, Q. Pei, Complexity 2018, 3012743 (2018)

    Google Scholar 

  42. Y. Yao, W. Cao, Q. Pei, C. Ma, M. Yi, Complexity 2018, 879329 (2018)

    Google Scholar 

  43. V. Berec, Chaos 86, 75 (2016)

    MathSciNet  Google Scholar 

  44. V. Berec, Eur. Phys. J. Special Topics 225, 7 (2016)

    Article  ADS  Google Scholar 

  45. Y. Yao, L. Yang, C. Wang, Q. Liu, R. Gui, J. Xiong, M. Yi, Complexity 2018, 5632650 (2018)

    Google Scholar 

  46. Y. Xu, Y. Jia, J. Ma, H. Tasawar, A. Ahmed, Sci. Rep. 8, 1349 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Lu, L., Xu, Y. et al. Effects of electromagnetic induction on signal propagation and synchronization in multilayer Hindmarsh-Rose neural networks. Eur. Phys. J. Spec. Top. 228, 2455–2464 (2019). https://doi.org/10.1140/epjst/e2019-900006-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900006-2

Navigation