Skip to main content
Log in

Detecting the significant nodes in two-layer flow networks: an interlayer non-failure cascading effect perspective

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Detecting the significant nodes in multilayer networks is crucial for preventing the large-scale spread of disaster events. However, the existing model can hardly simulate the ubiquitous non-failure cascading effect process in social and economic systems. To solve this problem, first, we propose a mathematical method of constructing a two-layer network model. Then we define the non-failure cascading effect process in the two-layer network. Based on the model and spreading process, we propose a non-failure cascading effect index by using each node’s non-failure cascading affecting in uential degree on the two-layer network. We then applied the detecting model in theoretical two-layer networks. We find there exist significant nodes, and also exist several in uential factors of the interlayer cascading effect process. The detecting model is applied in the two-layer industrial input-output networks between the U.S. and China for testing the validity of the theoretical model. The hybrid network combination is relatively more sensitive to in uential factors; the significant nodes are more prominent in scale-free networks. Our research provides a solution for finding the significant nodes in two-layer social or economic networks based on the non-failure cascading effect process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kundur, N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, R. Schulz, A. Stankovic, C. Taylor, V. Vittal, IEEE Trans. Power Syst. 20, 1922 (2005)

    Article  ADS  Google Scholar 

  2. A.R. Mian, A. Sufi, Q. J. Econ. 124, 1449 (2009)

    Article  Google Scholar 

  3. Y. Han, C. Guo, S. Ma, D. Song, J. Mod. Power Syst. Clean Energy 6, 944 (2018)

    Article  Google Scholar 

  4. D. Helbing, D. Brockmann, T. Chadefaux, K. Donnay, U. Blanke, O. Woolley-Meza, M. Moussaid, A. Johansson, J. Krause, S. Schutte, M. Perc, J. Stat. Phys. 158, 735 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. Demyanyk, O. Van Hemert, Rev. Financial Stud. 24, 1848 (2011)

    Article  Google Scholar 

  6. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  7. R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Brin, L. Page, Comput. Netw. ISDN Syst. 30, 107 (1998)

    Article  Google Scholar 

  10. L.Y. Lu, D.B. Chen, X.L. Ren, Q.M. Zhang, Y.C. Zhang, T. Zhou, Phys. Rep. 650, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. Lett. 96, 040601 (2006)

    Article  ADS  Google Scholar 

  12. M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.E. Stanley, H.A. Makse, Nat. Phys. 6, 888 (2010)

    Article  Google Scholar 

  13. J.E. Hirsch, Proc. Natl. Acad. Sci. USA 102, 16569 (2005)

    Article  ADS  Google Scholar 

  14. Z. Gao, W. Dang, C. Mu, Y. Yang, S. Li, C. Grebogi, IEEE Trans. Ind. Inf. 14, 3982 (2018)

    Article  Google Scholar 

  15. Z.-K. Gao, Q. Cai, Y.-X. Yang, W.-D. Dang, S.-S. Zhang, Sci. Rep. 6, 35622 (2016)

    Article  ADS  Google Scholar 

  16. Z.-K. Gao, Y.-X. Yang, Europhys. Lett. 109, 30005 (2015)

    Article  ADS  Google Scholar 

  17. L. Lu, T. Zhou, Q.M. Zhang, H.E. Stanley, Nat. Commun. 7, 10168 (2016)

    Article  ADS  Google Scholar 

  18. Q. Ji, E. Bouri, D. Roubaud, Int. Rev. Financ. Anal. 57, 1 (2018)

    Article  Google Scholar 

  19. B.-Y. Liu, Q. Ji, Y. Fan, Quant. Finance 17, 437 (2017)

    Article  MathSciNet  Google Scholar 

  20. M. Jalili, M. Perc, J. Complex Netw. 5, 665 (2017)

    MathSciNet  Google Scholar 

  21. B. Podobnik, D. Horvatic, T. Lipic, M. Perc, J.M. Buldu, H.E. Stanley, J.R. Soc, Interface 12, 20150770 (2015)

    Google Scholar 

  22. G. Bianconi, J. Stat. Mech. Theory Exp. 3, 034001 (2017)

    Article  Google Scholar 

  23. J.E. Hirsch, Proc. Natl. Acad. Sci. USA 102, 16569 (2005)

    Article  ADS  Google Scholar 

  24. C.D. Brummitt, R.M. D’Souza, E.A. Leicht, Proc. Natl. Acad. Sci. USA 109, E680 (2012)

    Article  ADS  Google Scholar 

  25. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)

    Article  ADS  Google Scholar 

  26. S. Hong, J. Zhu, L.A. Braunstein, T. Zhao, Q. You, J. Stat. Mech. Theory Exp. 2017, 103208 (2017)

    Article  Google Scholar 

  27. W. Li, A. Bashan, S.V. Buldyrev, H.E. Stanley, S. Havlin, Phys. Rev. Lett. 108, 228702 (2012)

    Article  ADS  Google Scholar 

  28. L.D. Valdez, M.A. Di Muro, L.A. Braunstein, J. Stat. Mech. Theory Exp. 2016, 093402 (2016)

    Article  Google Scholar 

  29. D. Vaknin, M.M. Danziger, S. Havlin, New J. Phys. 19, 073037 (2017)

    Article  ADS  Google Scholar 

  30. C. Chen, J. He, N. Bliss, H. Tong, IEEE Trans. Knowl. Data Eng. 29, 2332 (2017)

    Article  Google Scholar 

  31. L. Jin, X.J. Wang, Z. Yong, J. Lei, J.W. Xiao, Int. J. Mod. Phys. 28, 1750050 (2017)

    Article  Google Scholar 

  32. M.P. Timmer, E. Dietzenbacher, B. Los, R. Stehrer, G.J. de Vries, Rev. Int. Econ. 23, 575 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyun Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, F., Gao, X., Guan, J. et al. Detecting the significant nodes in two-layer flow networks: an interlayer non-failure cascading effect perspective. Eur. Phys. J. Spec. Top. 228, 2475–2490 (2019). https://doi.org/10.1140/epjst/e2019-800196-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800196-2

Navigation