Skip to main content
Log in

Understanding nonlinearity in electrochemical systems

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Commonly applied electrochemical methods for the analysis and diagnosis of the processes in and state of electrochemical cells, such as Electrochemical Impedance Spectroscopy and Current Interrupt analysis, are either limited to linear analysis or the signal is quite unspecific which hampers to extract significant and precise nonlinear information. We present a systematic insight into how significant information can be extracted from a promising alternative nonlinear dynamic electrochemical analysis technique, Nonlinear Frequency Response Analysis. Further, we present a fundamental and in-depth study of impact of processes at electrodes on nonlinear behavior. Model based analysis of a reaction process with Butler-Volmer kinetics and of a diffusion process are thereby used to understand and interpret the excitation of higher harmonics. A reaction with a symmetric current potential relation thereby causes an excitation of the third harmonic, whereas for the diffusion process the second and third harmonic are excited. Nonlinearities caused by diffusion are limited to low frequencies. Further, parameter variations of exchange current density, double layer capacitance and diffusion coefficient as well as variation of the input signal show that the symmetry of the nonlinear behavior between current and potential is responsible for the excitation of the second and third harmonic. The tangent method is presented as a suitable method to quantitatively evaluate and compare influences of each process and parameter on spectrum features and the related characteristic frequency range. The work thus serves as a guideline for using and interpreting nonlinear frequency response spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Andre, M. Meiler, K. Steiner, Ch. Wimmer, T. Soczka-Guth, D.U. Sauer, J. Power Sources 196, 5334 (2011)

    Article  ADS  Google Scholar 

  2. H. Baltruschat, Am. Soc. Mass Spectr. 15, 1693 (2004)

    Article  Google Scholar 

  3. A.J. Bard, L.R. Faulkner, E. Swain, C. Robey, Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, 2001)

  4. B. Bensmann, M. Petkovska, R. Hanke-rauschenbach, K. Sundmacher, J. Electrochem. Soc. 157, 1279 (2010)

    Article  Google Scholar 

  5. D.M. Bernardi, J. Go, J. Power Sources 196, 412 (2011)

    Article  ADS  Google Scholar 

  6. N. Elgrishi, K.J. Rountree, B.D. Mccarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ. 95, 197 (2018)

    Article  Google Scholar 

  7. N. Harting, N. Wolff, U. Krewer, Electrochim. Acta 281, 378 (2018)

    Article  Google Scholar 

  8. N. Harting, N. Wolff, F. Röder, U. Krewer, Electrochim. Acta 248, 133 (2017)

    Article  Google Scholar 

  9. J. Heinze, Angew. Chem. 23, 831 (1984)

    Article  Google Scholar 

  10. T. Jacobsen, K. West, Electrochim. Acta 40 (1995)

  11. T. Kadyk, R. Hanke-Rauschenbach, K. Sundmacher, J. Electroanal. Chem. 630, 19 (2009)

    Article  Google Scholar 

  12. T. Kadyk, R. Hanke-Rauschenbach, K. Sundmacher, J. Appl. Electrochem. 41, 1021 (2011)

    Article  Google Scholar 

  13. T. Kadyk, R. Hanke-rauschenbach, K. Sundmacher, Int. J. Hydrogen Energy 37, 7689 (2012)

    Article  Google Scholar 

  14. M. Kiel, O. Bohlen, D.U. Sauer, Electrochim. Acta 53, 7367 (2008)

    Article  Google Scholar 

  15. M. Koper, J. Chem. Soc. Faraday Trans. 94, 1369 (1998)

    Article  Google Scholar 

  16. J. Koryta, J. Dvorak, V. Bohackova, Lehrbuch der Elektrochemie (Springer Verlag, 2012)

  17. U. Krewer, A. Kamat, K. Sundmacher, J. Electroanal. Chem. 609, 105 (2007)

    Article  Google Scholar 

  18. U. Krewer, T. Vidakovic-Koch, L. Rihko-Struckmann, ChemPhysChem 12, 2518 (2011)

    Article  Google Scholar 

  19. F. Kubannek, U. Krewer, Electrochim. Acta 210, 862 (2016)

    Article  Google Scholar 

  20. Q. Mao, U. Krewer, Electrochim. Acta 68, 60 (2012)

    Article  Google Scholar 

  21. Q. Mao, U. Krewer, Electrochim. Acta 103, 188 (2013)

    Article  Google Scholar 

  22. Q. Mao, U. Krewer, R. Hanke-Rauschenbach, Electrochem. Commun. 12, 1517 (2010)

    Article  Google Scholar 

  23. M.D. Murbach, D.T. Schwartz, J. Electrochem. Soc. 164, 3311 (2017)

    Article  Google Scholar 

  24. H. Ramon, E. Siller, Non-Linear Modal Analysis Methods for Engineering, PhD thesis, Imperial College London, 2004

  25. J. Rusling, S.L. Suib, Adv. Mater. 6, 922 (1994)

    Article  Google Scholar 

  26. H. Schweiger, O. Obeidi, O. Komesker, A. Raschke, M. Schiemann, C. Zehner, M. Gehnen, M. Keller, P. Birke, Sensors 10, 5604 (2010)

    Article  Google Scholar 

  27. H. Varela, K. Krischer, Catal. Today 70, 411 (2001)

    Article  Google Scholar 

  28. T.R. Vidakovic-Koch, V.V. Panic, M. Andric, M. Petkovska, K. Sundmacher, J. Phys. Chem. C 115, 17341 (2011)

    Article  Google Scholar 

  29. T.R. Vidakovic-Koch, V.V. Panic, M. Andric, M. Petkovska, K. Sundmacher, J. Phys. Chem. C 115, 17352 (2011)

    Article  Google Scholar 

  30. J.R. Wilson, D.T. Schwartz, S.B. Adler, Electrochim. Acta 51, 1389 (2006)

    Article  Google Scholar 

  31. N. Wolff, N. Harting, M. Heinrich, F. Röder, U. Krewer, Electrochim. Acta 260, 614 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Wolff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, N., Harting, N., Röder, F. et al. Understanding nonlinearity in electrochemical systems. Eur. Phys. J. Spec. Top. 227, 2617–2640 (2019). https://doi.org/10.1140/epjst/e2019-800135-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800135-2

Navigation