Skip to main content

Advertisement

Log in

The impact of solvation and dissociation on the transport parameters of liquid electrolytes: continuum modeling and numerical study

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Electro-thermodynamics provides a consistent framework to derive continuum models for electrochemical systems. For the application to a specific experimental system, the general model must be equipped with two additional ingredients: a free energy model to calculate the chemical potentials and a kinetic model for the kinetic coefficients. Suitable free energy models for liquid electrolytes incorporating ion–solvent interaction, finite ion sizes and solvation already exist and have been validated against experimental measurements. In this work, we focus on the modeling of the mobility coefficients based on Maxwell–Stefan setting and incorporate them into the general electro-thermodynamic framework. Moreover, we discuss the impact of model parameter on conductivity, transference numbers and salt diffusion coefficient. In particular, the focus is set on the solvation of ions and incomplete dissociation of a non-dilute electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Bothe, W. Dreyer, Acta Mech. 226, 1757 (2015)

    Article  MathSciNet  Google Scholar 

  2. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2000)

  3. A.M. Bizeray, D.A. Howey, C.W. Monroe, J. Electrochem. Soc. 163, E223 (2016)

    Article  Google Scholar 

  4. J.E. Dykstra, P.M. Biesheuvel, H. Bruning, A. Ter Heijne, Phys. Rev. E 90, 013302 (2014)

    Article  ADS  Google Scholar 

  5. M.M. Doeff, L. Edman, S.E. Sloop, J. Kerr, L.C. De Jonghe, J. Power Sources 89, 227 (2000)

    Article  ADS  Google Scholar 

  6. W. Dreyer, C. Guhlke, M. Landstorfer, Electrochem. Commun. 43, 75 (2014)

    Article  Google Scholar 

  7. W. Dreyer, C. Guhlke, M. Landstorfer, R. Müller, Eur. J. Appl. Math. 29, 708 (2018)

    Article  Google Scholar 

  8. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North Holland, Amsterdam, 1962)

  9. W. Dreyer, C. Guhlke, R. Müller, Phys. Chem. Chem. Phys. 15, 7075 (2013)

    Article  Google Scholar 

  10. W. Dreyer, C. Guhlke, R. Müller, Phys. Chem. Chem. Phys. 17, 27176 (2015)

    Article  Google Scholar 

  11. W. Dreyer, C. Guhlke, R. Müller, Phys. Chem. Chem. Phys. 18, 24966 (2016)

    Article  Google Scholar 

  12. W. Dreyer, C. Guhlke, R. Müller, Entropy 20, 939 (2018)

    Article  ADS  Google Scholar 

  13. R. Datta, S.A. Vilekar, Chem. Eng. Sci. 65, 5976 (2010)

    Article  Google Scholar 

  14. M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 021502 (2007)

    Article  ADS  Google Scholar 

  15. M. Landstorfer, C. Guhlke, W. Dreyer, Electrochim. Acta 201, 187 (2016)

    Article  Google Scholar 

  16. C.W. Monroe, C. Delacourt, Electrochim. Acta 114, 649 (2013)

    Article  Google Scholar 

  17. Y. Ma, M. Doyle, T.F. Fuller, M.M. Doeff, L.C. De Jonghe, J. Newman, J. Electrochem. Soc. 142, 1859 (1995)

    Article  Google Scholar 

  18. C.W. Monroe, Ionic mobility and diffusivity, in Encyclopedia of Applied Electrochemistry, edited by G. Kreysa, K. Ota, R.F. Savinell (Springer, New York, 2014), pp. 1125–1130

  19. I. Müller, Thermodynamics (Pitman Publishing, London, 1985)

  20. J. Newman, K.E. Thomas-Alyea, Electrochemical Systems (Wiley, Hoboken, NJ, 2004)

  21. Y.S. Oren, P.M. Biesheuvel, Phys. Rev. Appl. 9, 024034 (2018)

    Article  ADS  Google Scholar 

  22. A.M. Ramos, Appl. Math. Model. 40, 115 (2016)

    Article  MathSciNet  Google Scholar 

  23. R.H. Stokes, B.J. Levien, J. Am. Chem. Soc. 68, 1852 (1946)

    Article  Google Scholar 

  24. W.H. Smyrl, J. Newman, J. Phys. Chem. 72, 4660 (1968)

    Article  Google Scholar 

  25. G.L. Standart, R. Taylor, R. Krishna, Chem. Eng. Commun. 3, 277 (1979)

    Article  Google Scholar 

  26. M. Tedesco, H.V.M. Hamelers, P.M. Biesheuvel, J. Membrane Sci. 531, 172 (2017)

    Article  Google Scholar 

  27. R. Taylor, R. Krishna, in Multicomponent Mass Transfer (John Wiley & Sons, New York, 1993), Vol. 2

  28. C. Truesdell, J. Chem. Phys. 37, 2336 (1962)

    Article  ADS  Google Scholar 

  29. G. Wedler, Lehrbuch der Physikalischen Chemie (Wiley-, Weinheim, 2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Guhlke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreyer, W., Guhlke, C. & Müller, R. The impact of solvation and dissociation on the transport parameters of liquid electrolytes: continuum modeling and numerical study. Eur. Phys. J. Spec. Top. 227, 2515–2538 (2019). https://doi.org/10.1140/epjst/e2019-800133-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800133-2

Navigation