Skip to main content
Log in

Controlling the interfacial and bulk concentrations of spontaneously charged colloids in non-polar media

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Stabilization and dispersion of electrical charge by colloids in non-polar media, such as nano-particles or inverse micelles, is significant for a variety of chemical and technological applications, ranging from drug delivery to e-ink. Many applications require knowledge about concentrations near the solid–liquid interface and the bulk, particularly in media where colloids exhibit spontaneous charging and change in chemical properties. By modification of the mean field equations to include the finite size effects that are typical in concentrated electrolytes along with disproportionation kinetics, and by considering high potentials, it is possible to evaluate the width of the condensed double layers near planar electrodes and the bulk concentrations of colloids. These quantities also provide an estimate of the minimum initial colloid concentration that is required to support electroneutrality in the dispersion bulk, and thus provide insights into the duration of quasi-steady state currents that have been observed in inverse micellar media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Strubbe, K. Neyts, J. Phys.: Condens. Matter 29, 453003 (2017)

    ADS  Google Scholar 

  2. J. Lyklema, Curr. Opin. Colloid Interf. Sci. 18, 116 (2013)

    Article  Google Scholar 

  3. A. Dukhin, S. Parlia, Curr. Opin. Colloid Interf. Sci. 18, 93 (2013)

    Article  Google Scholar 

  4. N. Bizmark, M.A. Ioannidis, Soft Matter 14, 6404 (2018)

    Article  ADS  Google Scholar 

  5. G.N. Smith, J. Eastoe, Phys. Chem. Chem. Phys. 15, 424 (2013)

    Article  Google Scholar 

  6. M. Prasad, F. Strubbe, F. Beunis, K. Neyts, Langmuir 32, 5796 (2016)

    Article  Google Scholar 

  7. M.F. Hsu, E.R. Dufresne, D.A. Weitz, Langmuir 21, 4881 (2005)

    Article  Google Scholar 

  8. K. Neyts, F. Beunis, F. Strubbe, M. Marescaux, B. Verboven, M. Karvar, A. Verschueren, J. Phys.: Condens. Matter 22, 494108 (2010)

    Google Scholar 

  9. F. Strubbe, A.R. Verschueren, L.J. Schlangen, F. Beunis, K. Neyts, J. Colloid Interf. Sci. 300, 396 (2006)

    Article  ADS  Google Scholar 

  10. J. Bikerman, Philos. Mag. 33, 384 (1942)

    Article  Google Scholar 

  11. I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79, 435 (1997)

    Article  ADS  Google Scholar 

  12. J. Cervera, J.A. Manzanares, S. Mafé, Phys. Chem. Chem. Phys. 3, 2493 (2001)

    Article  Google Scholar 

  13. A.G. Moreira, R.R. Netz, Eur. Phys. J. E 8, 33 (2002)

    Article  Google Scholar 

  14. J. Cervera, V. García-Morales, J. Pellicer, J. Phys. Chem. B 107, 8300 (2003)

    Article  Google Scholar 

  15. M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 021503 (2007)

    Article  ADS  Google Scholar 

  16. P.M. Biesheuvel, J. Colloid Interf. Sci. 355, 389 (2011)

    Article  ADS  Google Scholar 

  17. M.M. Hatlo, R. Van Roij, L. Lue, Europhys. Lett. 97, 28010 (2012)

    Article  Google Scholar 

  18. A. Yochelis, J. Phys. Chem. C 118, 5716 (2014)

    Article  Google Scholar 

  19. E. Spruijt, P.M. Biesheuvel, J. Phys.: Condens. Matter 26, 075101 (2014)

    Google Scholar 

  20. I.D. Morrison, Colloids Surf. A 71, 1 (1993)

    Article  Google Scholar 

  21. B. Comiskey, J. Albert, H. Yoshizawa, J. Jacobson, Nature 394, 253 (1998)

    Article  ADS  Google Scholar 

  22. Y. Mori, Y. Okastu, Y. Tsujimoto, J. Nanopart. Res. 3, 219 (2001)

    Article  ADS  Google Scholar 

  23. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010)

    Article  Google Scholar 

  24. C.-X. Zhao, L. He, S.Z. Qiao, A.P. Middelberg, Chem. Eng. Sci. 66, 1463 (2011)

    Article  Google Scholar 

  25. J.-I. Yoshida, H. Kim, A. Nagaki, ChemSusChem 4, 331 (2011)

    Article  Google Scholar 

  26. M. Pileni, J. Phys. Chem. 97, 6961 (1993)

    Article  Google Scholar 

  27. A.M. Foudeh, T. Fatanat Didar, T. Veres, M. Tabrizian, Lab Chip 12, 3249 (2012)

    Article  Google Scholar 

  28. J.E. Kreutz, A. Shukhaev, W. Du, S. Druskin, O. Daugulis, R.F. Ismagilov, J. Am. Chem. Soc. 132, 3128 (2010)

    Article  Google Scholar 

  29. L. Shang, Y. Cheng, Y. Zhao, Chem. Rev. 117, 7964 (2017)

    Article  Google Scholar 

  30. N. Gavish, D. Elad, A. Yochelis, J. Phys. Chem. Lett. 9, 36 (2018)

    Article  Google Scholar 

  31. S. Bier, N. Gavish, H. Uecker, A. Yochelis, Phys. Rev. E 95, 060201(R) (2017)

    Article  ADS  Google Scholar 

  32. M. Islam, Phys. Scr. 70, 120 (2004)

    Article  ADS  Google Scholar 

  33. G.X. Cheng, F. Shen, L.F. Yang, L.R. Ma, Y. Tang, K. De Yao, P.C. Sun, Mater. Chem. Phys. 56, 97 (1998)

    Article  Google Scholar 

  34. Y. Feldman, A. Puzenko, Y. Ryabov, Chem. Phys. 284, 139 (2002)

    Article  Google Scholar 

  35. R. Ganguly, N. Choudhury, J. Colloid Interf. Sci. 372, 45 (2012)

    Article  ADS  Google Scholar 

  36. J. Israelachvili, Intermolecular and Surface Forces (Elsevier Science, 2015)

  37. N. Gavish, K. Promislow, Phys. Rev. E 94, 012611 (2016)

    Article  ADS  Google Scholar 

  38. N. Gavish, I. Versano, A. Yochelis, SIAM J. Appl. Dyn. Syst. 16, 1946 (2017)

    Article  MathSciNet  Google Scholar 

  39. H. Zhao, Phys. Rev. E 84, 051504 (2011)

    Article  ADS  Google Scholar 

  40. A. Yochelis, Phys. Chem. Chem. Phys. 16, 2836 (2014)

    Article  Google Scholar 

  41. F. Strubbe, M. Prasad, F. Beunis, J. Phys. Chem. B 119, 1957 (2015)

    Article  Google Scholar 

  42. R.M. Adar, T. Markovich, D. Andelman, J. Chem. Phys. 146, 194904 (2017)

    Article  ADS  Google Scholar 

  43. M.A. Gebbie, M. Valtiner, X. Banquy, E.T. Fox, W.A. Henderson, J.N. Israelachvili, Proc. Natl. Acad. Sci. USA 110, 9674 (2013)

    Article  ADS  Google Scholar 

  44. A.A. Lee, D. Vella, S. Perkin, A. Goriely, J. Phys. Chem. Lett. 6, 159 (2014)

    Article  Google Scholar 

  45. B. Kirchner, F. Malberg, D.S. Firaha, O. Hollóczki, J. Phys.: Condens. Matter 27, 463002 (2015)

    Google Scholar 

  46. P.G. Molina, J.J. Silber, N.M. Correa, L. Sereno, J. Phys. Chem. C 111, 4269 (2007)

    Article  Google Scholar 

  47. K. Tonova, Z. Lazarova, Biotechnol. Adv. 26, 516 (2008)

    Article  Google Scholar 

  48. V. Vanag, I. Epstein, in Self-Organized Morphology in Nanostructured Materials (Springer, 2008), pp. 89–113

  49. B. Baruah, J.M. Roden, M. Sedgwick, N.M. Correa, D.C. Crans, N.E. Levinger, J. Am. Chem. Soc. 128, 12758 (2006)

    Article  Google Scholar 

  50. A.P. dos Santos, A. Bakhshandeh, A. Diehl, Y. Levin, Soft Matter 12, 8528 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arik Yochelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bier, S., Yochelis, A. Controlling the interfacial and bulk concentrations of spontaneously charged colloids in non-polar media. Eur. Phys. J. Spec. Top. 227, 2603–2616 (2019). https://doi.org/10.1140/epjst/e2019-800125-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800125-9

Navigation