Skip to main content
Log in

An effect of large permanent charge: decreasing flux with increasing transmembrane potential

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this work, we examine effects of large permanent charges on ionic flow through ion channels based on a quasi-one-dimensional Poisson–Nernst–Planck model. It turns out that large positive permanent charges inhibit the flux of cation as expected, but strikingly, as the transmembrane electrochemical potential for anion increases in a particular way, the flux of anion decreases. The latter phenomenon was observed experimentally but the cause seemed to be unclear. The mechanisms for these phenomena are examined with the help of the profiles of the ionic concentrations, electric fields and electrochemical potentials. The underlying reasons for the near zero flux of cation and for the decreasing flux of anion with the increasing of its transmembrane electrochemical potential are shown to be significantly different over different regions of the permanent charge. Our model is oversimplified. More structural detail and more correlations between ions can and should be included. But the basic finding seems striking and important and deserving of further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Abelson, M.I. Simon, S.V. Ambudkar, M.M. Gottesman, ABC Transporters: Biochemical, Cellular, and Molecular Aspects (Academic Press, 1998)

  2. P.F. Baker, M.P. Blaustein, A.L. Hodgkin, R.A. Steinhardt, J. Physiol. 200, 431 (1969)

    Article  Google Scholar 

  3. M.P. Blaustein, W.J. Lederer, Physiol. Rev. 79, 763 (1999)

    Article  Google Scholar 

  4. P. Chlanda, E. Mekhedov, H. Waters, C.L. Schwartz, E.R. Fischer, R.J. Ryham, F.S. Cohen, P.S. Blank, J. Zimmerberg, Nat. Microbiol. 1, 16050 (2016)

    Article  Google Scholar 

  5. B. Eisenberg, W. Liu, Mol. Based Math. Biol. 5, 125 (2017)

    MathSciNet  Google Scholar 

  6. B. Eisenberg, ASBMB Today 13, 36 (2014)

    Google Scholar 

  7. B. Eisenberg, Fluct. Noise Lett. 11, 1240001 (2012)

    Article  Google Scholar 

  8. B. Eisenberg, Crowded charges in ion channels, in Advances in Chemical Physics, edited by S.A. Rice, A.R. Dinner (John Wiley & Sons, Inc., 2012), Vol. 148, pp. 77–223

  9. R.S. Eisenberg, J. Memb. Biol. 150, 1 (1996)

    Article  Google Scholar 

  10. R.S. Eisenberg, Atomic biology, electrostatics and ionic channels, in New Developments and Theoretical Studies of Proteins, edited by R. Elber (World Scientific, Philadelphia, 1996), pp. 269–357

  11. R.S. Eisenberg, J. Memb. Biol. 115, 1 (1990)

    Article  Google Scholar 

  12. B. Eisenberg, W. Liu, SIAM J. Math. Anal. 38, 1932 (2007)

    Article  MathSciNet  Google Scholar 

  13. B. Eisenberg, W. Liu, H. Xu, Nonlinearity 28, 103 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. O. Frohlich, R.B. Gunn, Biochem. Biophys. Acta 864, 169 (1986)

    Google Scholar 

  15. D. Gillespie, A singular perturbation analysis of the Poisson–Nernst–Planck system: Applications to Ionic Channels, Ph.D. Dissertation, Rush University at Chicago, 1999

  16. J. Griffiths, C. Sansom, The Transporter Facts Book (Academic Press, 1997)

  17. F. Helfferich, Ion Exchange (1995 Reprint) (McGraw Hill reprinted by Dover, 1962)

  18. B. Hille, Ion Channels of Excitable Membranes, 3rd edn. (Sinauer Associates Inc., 2001)

  19. B. Hille, Transport Across Cell Membranes: Carrier Mechanisms, in Textbook of Physiology, edited by H.D. Patton et al. (Saunders, 1989), Vol. 1, Chap. 2, pp. 24–47

  20. A.L. Hodgkin, Biol. Rev. 26, 339 (1951)

    Article  Google Scholar 

  21. S. Ji, B. Eisenberg, W. Liu, J. Dyn. Differ. Equ. (2017), https://doi.org/10.1007/s10884-017-9607-1

  22. S. Ji, W. Liu, J. Dyn. Differ. Equ. 24, 955 (2012)

    Article  Google Scholar 

  23. S. Ji, W. Liu, M. Zhang, SIAM J. Appl. Math. 75, 114 (2015)

    Article  MathSciNet  Google Scholar 

  24. R.D. Keynes, R.C. Swan, J. Physiol. 147, 591 (1959)

    Article  Google Scholar 

  25. G. Lin, W. Liu, Y. Yi, M. Zhang, SIAM J. Appl. Dyn. Syst. 12, 1613 (2013)

    Article  MathSciNet  Google Scholar 

  26. W. Liu, SIAM J. Appl. Math. 65, 754 (2005)

    Article  MathSciNet  Google Scholar 

  27. W. Liu, J. Differ. Equ. 246, 428 (2009)

    Article  ADS  Google Scholar 

  28. W. Liu, B. Wang, J. Dyn. Differ. Equ. 22, 413 (2010)

    Article  Google Scholar 

  29. W. Liu, X. Tu, M. Zhang, J. Dyn. Differ. Equ. 24, 985 (2012)

    Article  Google Scholar 

  30. W. Liu, H. Xu, J. Differ. Equ. 258, 1192 (2015)

    Article  ADS  Google Scholar 

  31. M. Lu, J. Symersky, M. Radchenko, A. Koide, Y. Guo, R. Nie, S. Koide, Proc. Natl. Acad. Sci. U. S. A. 110, 2099 (2013)

    Article  ADS  Google Scholar 

  32. H. Miedema, M. Vrouenraets, J. Wierenga, W. Meijberg, G. Robillard, B. Eisenberg, Nano Lett. 7, 2886 (2007)

    Article  ADS  Google Scholar 

  33. W. Nonner, R.S. Eisenberg, Biophys. J. 75, 1287 (1998)

    Article  ADS  Google Scholar 

  34. R.F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996)

  35. I. Rubinstein, Electro-Diffusion of Ions, in SIAM Studies in Applied Mathematics (SIAM, Philadelphia, PA, 1990), Vol. 11

  36. B. Sakmann, E. Neher, Single Channel Recording, 2nd edn. (Plenum, 1995)

  37. W.D. Stein, T. Litman, Channels, carriers, and pumps: an introduction to membrane transport (Elsevier, 2014)

  38. R.B. Stockbridge, L. Kolmakova-Partensky, T. Shane, A. Koide, A. Koide, C. Miller, S. Newstead, Nature 525, 548 (2015)

    Article  ADS  Google Scholar 

  39. S.M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981)

  40. F.L. Theodoulou, I.D. Kerr, Biochem. Soc. Trans. 43, 1033 (2015)

    Article  Google Scholar 

  41. D. Tosteson, Membrane Transport: People and Ideas (American Physiological Society, 1989)

  42. H.H. Ussing, Acta Physiolog. Scand. 19, 43 (1949)

    Article  Google Scholar 

  43. H.H. Ussing, Nature 160, 262 (1947)

    Article  ADS  Google Scholar 

  44. D. Vasileska, S.M. Goodnick, G. Klimeck, in Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation (CRC Press, 2010), Vol. 764

  45. W. Wang, R. MacKinnon, Cell 169, 422 (2017)

    Article  Google Scholar 

  46. L. Zhang, W. Liu, Poisson–Nernst–Planck systems for ion channels with large permanent charges. Preprint.

  47. J. Zheng, M.C. Trudeau, Handbook of ion channels (CRC Press, 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Eisenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Eisenberg, B. & Liu, W. An effect of large permanent charge: decreasing flux with increasing transmembrane potential. Eur. Phys. J. Spec. Top. 227, 2575–2601 (2019). https://doi.org/10.1140/epjst/e2019-700134-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-700134-7

Navigation