Skip to main content
Log in

Effects of structure-dynamics correlation on hierarchical transitions in heterogeneous oscillatory networks

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The impact of frequency-degree and amplitude-degree correlation is studied for heterogeneous networks of coupled Stuart–Landau oscillators. It is shown that increasing coupling strength gives rise to hierarchical processes of oscillation quenching. In case of frequency-degree correlated networks, higher-frequency oscillators gradually become almost quenched while low-frequency ones still remain oscillating. In case of amplitude-degree correlated networks, there appear three distinct domains, two contain low-amplitude oscillations with positive and negative means, and the third includes high-amplitude oscillations around the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Newman, A.-L. Barabasi, D.J. Watts, The structure and dynamics of networks (Princeton University Press, Princeton, New Jersey, USA, 2011)

  3. O.V. Maslennikov, V.I. Nekorkin, Phys. Usp. 60, 694 (2017)

    Article  ADS  Google Scholar 

  4. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Bianconi, A.-L. Barabási, Europhys. Lett. 54, 436 (2001)

    Article  ADS  Google Scholar 

  6. G. Caldarelli, A. Capocci, P. De Los Rios, M.A. Munoz, Phys. Rev. Lett. 89, 258702 (2002)

    Article  ADS  Google Scholar 

  7. M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 68, 036112 (2003)

    Article  ADS  Google Scholar 

  8. K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)

    Article  Google Scholar 

  9. B. Söderberg, Phys. Rev. E 66, 066121 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Garlaschelli, M.I. Loffredo, Phys. Rev. Lett. 93, 188701 (2004)

    Article  ADS  Google Scholar 

  11. V.D.P. Servedio, G. Caldarelli, P. Buttà, Phys. Rev. E 70, 056126 (2004)

    Article  ADS  Google Scholar 

  12. S. Fortunato, A. Flammini, F. Menczer, Phys. Rev. Lett. 96, 218701 (2006)

    Article  ADS  Google Scholar 

  13. D. Garlaschelli, A. Capocci, G. Caldarelli, Nat. Phys. 3, 813 (2007)

    Article  Google Scholar 

  14. J. Gómez-Gardenes, S. Gómez, A. Arenas, Y. Moreno, Phys. Rev. Lett. 106, 128701 (2011)

    Article  ADS  Google Scholar 

  15. B. Coutinho, A. Goltsev, S. Dorogovtsev, J. Mendes, Phys. Rev. E 87, 032106 (2013)

    Article  ADS  Google Scholar 

  16. I. Leyva, R. Sevilla-Escoboza, J. Buldú, I. Sendina-Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, S. Boccaletti, Phys. Rev. Lett. 108, 168702 (2012)

    Article  ADS  Google Scholar 

  17. P.S. Skardal, J. Sun, D. Taylor, J.G. Restrepo, Europhys. Lett. 101, 20001 (2013)

    Article  ADS  Google Scholar 

  18. I. Leyva, A. Navas, I. Sendina-Nadal, J. Almendral, J. Buldú, M. Zanin, D. Papo, S. Boccaletti, Sci. Rep. 3, 1281 (2013)

    Article  ADS  Google Scholar 

  19. R.S. Pinto, A. Saa, Phys. Rev. E 91, 022818 (2015)

    Article  ADS  Google Scholar 

  20. S. Jiang, W. Fang, S. Tang, S. Pei, S. Yan, Z. Zheng, J. Korean. Phys. Soc. 67, 389 (2015)

    Article  ADS  Google Scholar 

  21. P. Kundu, P. Khanra, C. Hens, P. Pal, Phys. Rev. E 96, 052216 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. W. Liu, X. Wang, S. Guan, C.-H. Lai, New J. Phys. 11, 093016 (2009)

    Article  ADS  Google Scholar 

  23. G. Bordyugov, A. Pikovsky, M. Rosenblum, Phys. Rev. E 82, 035205 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.A. Selivanov, J. Lehnert, T. Dahms, P. Hövel, A.L. Fradkov, E. Schöll, Phys. Rev. E 85, 016201 (2012)

    Article  ADS  Google Scholar 

  25. A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales, Chaos 24, 013102 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Bi, X. Hu, X. Zhang, Y. Zou, Z. Liu, S. Guan, Europhys. Lett. 108, 50003 (2014)

    Article  ADS  Google Scholar 

  28. A. Zakharova, M. Kapeller, E. Schöll, Phys. Rev. Lett. 112, 154101 (2014)

    Article  ADS  Google Scholar 

  29. L.V. Gambuzza, J. Gómez-Gardeñes, M. Frasca, Sci. Rep. 6, 24915 (2016)

    Article  ADS  Google Scholar 

  30. A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E.J. Ngamga, L. Fortuna, J. Kurths, Phys. Rev. E 85, 026208 (2012)

    Article  ADS  Google Scholar 

  31. L.V. Gambuzza, A. Cardillo, A. Fiasconaro, L. Fortuna, J. Gómez-Gardenes, M. Frasca, Chaos 23, 043103 (2013)

    Article  ADS  Google Scholar 

  32. J. Gómez-Gardeñes, Y. Moreno, Phys. Rev. E 73, 056124 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oleg V. Maslennikov or Vladimir I. Nekorkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslennikov, O.V., Nekorkin, V.I. Effects of structure-dynamics correlation on hierarchical transitions in heterogeneous oscillatory networks. Eur. Phys. J. Spec. Top. 227, 1221–1230 (2018). https://doi.org/10.1140/epjst/e2018-800071-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800071-7

Navigation